AO_A195 076 A DYNANIC SCHEDULER FOR A COMWPUTER AIDED PROTYPING
SYSTENCUY NAVAL POSTGRACUATE SCHOOL WONTEREY CA
F/G 12/%

S L EATON

7 UL RS L B R e s R R L S R L ot 0 8 g A P P g e,
' U

\
R

. -

S ‘:,\ "

\
w

e

g
fl. .l' L)

.-
-

_r

f B f2s Wes s
- Ll F
"y 40 I
.

T.

er
I3
Fr
= [
o jllo
feaey

Lzs fis

=

‘r

o

iy
X
T

MIFPNCOPY REINMUTIEN TEST CHART
nS-1963-4

.
AL,

- w o ww
e P Ty
;o L0 -

B
5 %

2

g w v
-

3

EL AT

- N ; . N .]]
s ¥yt LIPS IS R N S I] e) ‘i‘-’\.‘ w{“’\""ﬁ"’*v—"‘—'—‘ g v
"ﬂ.‘}.""."-."-.’- .’s:‘}\."'-""." E Rt e ol PP o £ Lo R,
W e f‘.":‘-:‘-;‘-i'-';b"\-;ﬂ-:;' ',,-v;:.:}\"v-."-."_- e
" l'. ", ‘ n
et u, R

v Y
) !. .""

-

4
&
>.
x
».
f
»
rs
1 £
P
r
2
| 3
»
f 4
.
.
»
3
:
9
r
.
r
1]
1]
[4
[]
t
1 &
[
%3

Y
-
LS

g1 FILE COPy

NAVAL PGSTGRADUATE SCHOOL
Monterey, California

L

. ":;!

-~ .-‘

)
v .
oy @ 0F

A o g oV o
LYY

12

.'sls. Y
o] Exo.

e s .
- .'. < I‘J L4
O

AD-A195 876

ELECTE

| THESIS &',

i

Q5 e
1 T

l
)

[
S
LA

A DYNAMIC SCHEDULER FOR A COMPUTER
AIDED PROTYPING SYSTEM

h]

rad

20
P x
o >,

by

‘2@

JC

R

'S
‘x
)
[

Susan L. Eaton

March 1988

PN

'l ')
x
@

P
ot
N

S

=

,'..-,
NN
AT AN

Thesis Advisor

p

K

g
/‘.
Y

Approved for public release; distribution is unlimited.

/ v,
y

o

RS

e »"-,'sr‘r'
s

L

2 2% gN o N o
ey

AR
-

>
¥
=

4
L
x5

A

?
)
2 .
¥ Unclassified ;. ‘
Y secunity classification of this page / . A B
A Y N
o REPORT DOCUMENTATION PAGE
g la Report Security Classification Unclassified Ib Restrictive Markings
W & Security Classification Authority 3 Drstribution r\VfuIablhly of Report)))
:.: 2b Declassification Downgrading Schedule Approved for public release; distrbution is unlunited.
i:o 4 Performing Organization Report Number(s) 5 Momtoring Orgamzation Report Number(s)
p". %3 Name of Performing Organization 6b Office Symbol 7a Name of Monitoring Organization
f Naval Postgraduate School (if applicable) 32 Naval Postgraduate School
’ o¢ Address (city, state, and ZIP code) 75 Address (city, state, and ZIP code)
W Monterey, CA 93943-5000 Monterey, CA 93943-5000
:. 8a Name of Funding Sponsoring Organization | &b Office Symbol 9 Procurement Instruinent Idenufication Number 4
o (if applicable)
;:' Sc Address (city, state, und ZIP code) 10 Source of Funding Numbers \
'!!. Program Element No] Project N‘Ll Task No l\\'ork Unit Accesston No g
11 Tide (Include security classification) A DY NAMIC SCHEDULER FOR A COMPUTER AIDED PROTOTYPING SYSTEM

. 12 Personal Author(s) Susan L. Eaton
! 13a Type of Report 13b Time Covered 14 Date of Report (year, month, day) {5 Page Count
o Master's Thesis From To March 1988 60

5 16 Supplementary Notation The views expressed in this thesis are those of the author and do not reflect tire official policy or po-
po |sition of the Department of Defense or the U.S. Government.

17 Cosati Codes 18 Subject Terms (continue on reverse if necessary and identify by block number)

‘ Field Group subgroup | fapid prototyping, dynamic scheduling, ada i
N! ;
W 7"

19 AbktFact continue on reverse if necessary and identifv by block number)
Current software development methodologies ha* * proven to be ineffective for meeting the rsing demand for fast pro-
duction of reliable software for hard real-time computer systems. A computer-aided, rapid prototyping system (CAPS) based

) on a Prototype System Description Language (PSDL) and a set of software tools including an Execution Support Svstem
:; J{ESS), has been proposed by other research and provides a promising and cost effective alternative to the traditional devcl-
opment life cycle of these systems. t
This study proposes a four function design for the dynamic scheduler of the CAPS ESS. This design includes a method :
for invoking processes for the ESS static scheduler and translator, a scheduling algorithm for the scheduling of the prototype’s
B non-time crtical processes, and a method for error and interrupt handling during prototype execution.
2\
» »
»
~i
3 !
) "; A [}
»/ “1/ /,/
3 ~— /)
o
N b
o
! d
A
™" 0 Distribution Availability of Abstract 21 Abstract Security Classification
:. S unclasafied unhmited O same as report O DTIC users Unclassified -
n/ 22a Name of Responsible [ndividual 22b Telephone «include Area codr) 22¢ Office Symbol <
& | Luqgt (408) 646-2735 S21Q
f DD FORM 1473,84 MAR 83 APR edition may be used unul exhausted secursty classification of this page
All other editions are obsolete q
! Unclassitied .
1)) W
4
b 1
LN o
- .

B . ey -y (Y Ty ™ ""‘"""'-"-:";N',n""
iy ..‘._ . .p‘.r A AR e -r# Y LB e e RNt

L)

G e A

- Y - N W,] » v v g v - ~ -, ry . Ty ™ Y ‘ . g
ST T PO A T TN ST W, W M WL 2 W SUON R T RO ORA 18398 S0 (N (VL Cn ¥ om n N Pt fat b MELS,

]
| Approved for public release; distribution is unlimited.
X)
A Dynamic Scheduler for A Computer Aided FPrototvping Syvstem 'x'
)
by I t
! N
p Susan L. Eaton :
Lieutenant, United States Navy b
8 B.A., Towson State University, 1980 :
Submitted in partial fulfillment of the 3
N requirements for the degree of 4
y 4
MASTER OF SCIENCE IN TELECOMMUNICATIONS SYSTEMS 2
‘ MANAGEMENT W
R 0
q from the ¢
’. <
-
’ NAVAL POSTGRADUATE SCHOOL
March 1988 ;
3
. 2]
3) . A
; Author: //y/{‘»_*ﬁ__/k Ny oy~ :
' Susan L. Eaton) ;
X 2
[Approved by: — \ 3
LLFql, Thesis Advisor §
) .
] é&bﬂ %/ 3
[/Barr} A. Frew, Second Reader .
. ~ :
4 A .
David R. Whippl_~Chairman, 2
Departmgnt of Admiptrative Science h
l (C’(LA~ 5 - ‘
Jpafies M. Fremger, Acting, . .
N Deaprot Inlormation and Yolicy Sciences iy
” < -
3.
~ 3
™
W
i !
; \
4 w3
A X
X ,
. o
M \
o e g e R S S ST R A A I R

BRI

RX

* far $a® 12 1a® (R AN ‘. G TN ¥ et fas_ ‘Sad fa® o gat Jat. a P ; M N R W g fat

C » ot 0 20 1Y 000 fa%atatogat St d C o St TR RO
%
o
b
+
P
3
0
N
ABSTRACT a
|
° Current software development methodologies have proven to be ineflective for ‘;'
meeting the rising demand for fast production of reliable software for hard real-time N
. . . ~)
N computer systems. A computer-aided, rapid prototyping system (CAPS) based on a]
Prototype System Description Language (PSDL) and a set of software tools including
' an Execution Support System (ESS), has been proposed by other reseaicl and provides A
a promising and cost effective alternative to the traditional development life cycle of o
..
these systems. !
. . . . ¥ A
This study proposes a four function design for the dynamic scheduler of the CAPS \
ESS. This design includes a method for invoking processes for the ESS static scheduler ;:'.
. . . , . { f
\ and translator, a scheduling algorithm for the scheduling of the prototype’s non-tiiie 0
critical processes, and a method for error and interrupt handling during prototype exe- ,’.
cution. N
! o
-]
2
~
s
’ _?.
: 3]
™
-
~
\ Accescion For -
rb'mé SART -~
: | DTIo T ¥ 5
‘ Pl s i -
‘: REVES! e e e e . d
b] \
. ‘ N
v e e h
' it s ian/ [N
: e 2t .
) Avatlisal L11ly Codus 2
T SAratiovad/er
LN r Q,‘,/,,:._‘.l .
| | A
i \ PR
A '| o
‘ L ¢4
A -
¥
v.:‘
M “ .! -F-'-"' 'S .. ”'JJ"'-'F""\-'.".) - ..;.\ .,-.’- AL . ‘A. " 'I,':‘,‘f ,"; e '. : ‘-l'.'..r.‘r\i \‘\'_" -.-'r " ,'- " ' ~ A Y, '\Af:"‘

44" R ST T R RO AT LR YY) Aah ¥ 9ad Vol Ss0 vat AR sat ‘el Tat st et tal tel “ghatgua g ts b tg o ", Sa §ts oY (ah e t'adie s n b 0.8 g gt)

) \
; |:
’
" d
.
g
TABLE OF CONTENTS "
L INTRODUCTION .ottt e 1 . "-f
A. BACKGROUND ..ttt 1 N
B. OBJECTIVES .« vente et et e e 7 v
C. BENEFITS OF THIS STUDY o\ttt 9 In!
D. OVERVIEW oo\ttt e e 10
II. BACKGROUND AND DEVELOPMENT OF SCHEDULING ALGO-
RITHMS oot e e e 1)
A. THE SCUIEDULING PROBLEM « .o vveet e e 1 v
B. SCHEDULING METHODS ...\ oo i 2 !
. DECOMPOSITION STRATEGIES .. .vveieenanennn 2 _
2. THREE PROCESS MODELS .« . oottt 14 R
3. EARLIEST DEADLINE-PREDECESSOR PRIORITY ALGORITHM 17 b
4. THE RATE MONOTONIC SCHEDULING ALGORITHM 17 i
5. NEXT-FIT-M" ottt 19 .:q»
6. A TIME-DRIVEN SCHEDULING MODEL\ovvvvaenn... 19 e
7. DYNAMIC SCHEDULING OF TASK GROUPS ... ovvvnvn. .. 21 N
8. A RECEIVER-INITITATED SCHEDULING STRATEGY 22 E]
9. APPLICATIONS OF TIILESE METIIODS FOR THE CAPS SCIED- gi
-o;
[II. THE CAPS DYNAMIC SCHEDULER v vtoeee e 23 f-.:
A. SCHEDULING FUNCTIONS .ottt 23 3
I. THE RUN-TIME EXECUTIVE FUNCTION ...\, 23 b |
2. THE CREATE NON-TIME CRITICAL OPERATOR SCHEDULE oy
FUNCTION oot oot 25 3
3. THE TERMINATE PROTOTYPE FUNCTION ...t ... 28 $
4. THE HANDLE INTERRUPTS FUNCTION ..o, 28)
B. THE USE OF ADA o ovve oo 29) :3'
W
V. SUMMARY oot 3 o
[
v
9
b
3
' ‘ \, -.'\-.'A-.'\'-.“'-' CATRE B \'\' A AT el N N TR N e A ';\“.'\‘-.'-.‘ -..‘-\."\"-".’_\.’\‘\‘_-\"\'-."‘-:‘

G,
3

P

'

i A. THE QUESTIONS ANSWERED .+ . vv oo 31 .
) B. THE PROBLEMS THAT REMAIN oot 31 %
o

g C. CAPS: AN EFFECTIVE DEVELOPMENT ALTERNATIVE 32 :
;. D. CONCLUSION oo oo, 33 _
! APPENDIX A. A PSDL PROTOTYPE - ovveeeseee e 34 :
L} o
APPENDIX B. PSDL GRAMMAR SUMMARY oo oo 38 ;

. ¥
b APPENDIX C. DYNAMIC SCHEDULER FUNCTIONS .« oo a1 3
: o
| APPENDIX D. PSEUDO-CODE FOR AN ADA PROGRAM ..o 43 3
| ¢
' LIST OF REFERENCES .« o oo v oo oo 49 o
N N
INITIAL DISTRIBUTION LIST o vo oo, 52 3

b -
d

' af
" ' "
: R
X

. o
: 7
-

) -
5 !
‘ 4
. o N
{ ;

N v

» .‘::
N, e R Ty R S A T A S S S T N L T o X R s Mt I AN "',p"

LIST OF FIGURES

. PROCESS OF REQUIREMENTS DETERMINATION

. CAPS Architecture

. COMPONENTS OF THE CAPS EXECUTION SUPPORT SYSTEM
. DYNAMIC SCHEDULER FUNCTIONS

. STATIC SCHEDULER BLOCKING METHOD

. CREATION AND EXECUTION OF THE DYNAMIC SCHEDULE

LN ‘ ~ R T TP N TR R Iy o | LY LT T L A R e L P W ot Wy Vg e T g T Hn Y Th® N *a” TSl a " a"s s
W ..\ \, .'-'\' ."c" IR AT .q-} "¢ ,.‘- y f.l,nf\f"-‘\.‘-‘f-'-. ..-. .,r\.' a _ ' V.A. A -\. BT RN

'? I. INTRODUCTION a

S A. BACKGROUND

E" Increasing demand for rapid development of high quality software has risen to the
:‘, > point that significant improvements must “e¢ made to current software development
mcthodologies. This is because these methods do not produce software fast enough, nor v
-;' do they result in software products of sufficient quality. This is particularly true for _
5 development of software for hard real-time systems. A hard real-time system is one in ‘
which tasks have deadlines that must be met, otherwise severe consequences may result. f

. Many Command, Control and Communications (C3) Systems are examples of such
' systems. ‘
“: Production of hard real-time systems that support communications requirements 3
4 within the area of C3 are particularly challenging to software developers. One rcason ;
. for this is that communications systems are usually subject to very stringent real-time 3
: requirements. [For example, receiving and processing data from remote sensors may 3
y need to occur in the micro or millisecond timeframe. Another reason, often inherent to "
. . defense systems, is that communications software (as well as other types ol software) .
n must be interoperable across a wide variety of hardware and software environments. >
- This is exemplified by the fact that equipment {rom multiple vendors (utilizing proprie- ’

- tary or incompatible protocols), and obsolete, poorly documented systems must {unction
B together in support of various operational requirements. Furthermore, maintenance y
considerations across these diverse environments introduce an additional level of dilli- "g
, culty for software developers because the interoperability of these systems must be E
,'f. maintained when inconsistencies are reconciled or when upgrades are applied. N
Onc method for meeting these challenges, and the increased demand for rapid sys- .
': tem development, is rapid prototyping. A prototype is an executable model or pilot :‘,
version of the intended system which is used as an aid in analysis and design rather than |
-) as production software to be delivered to the user. Rapid prototyping is the con- A
3 struction activity which creates this executable model. This technique has been found K
t' to be effective for clarifying user requirements and eliminating the large amount of -
N wasted effort currently spent on developing software to meet incorrect or inappropriate ‘
N requirements in traditional software life cvcles, [Rel. 1@ p. 1] ‘
b '.
N :
: ‘ ;
. g
.)
:

‘O o , . . s . A R - - m o S R "3 ARTE AT AT " A G S AN U V)
B 2 A ey R T R SN DR R UMM AN IR

k>
-

e 2

o oo

X

AT s

-

b .' P S g ... \"~ WA ‘- ‘h}“"".:"-:"\.' ‘-_'_'_'L' YA '."."'-:P-')\";.}" \}\.},\’ M Y ”'-" W 'ﬁv‘ N ﬁ Y \ ™ 'i '._\;‘\'

Rapid construction of executable prototypes for hard real-tine systems would be
greatly enhanced through the use of a computer-aided design svsten. One such svstem
proposed by {Ref. 2] and [Ref. 3] is the Computer Aided Prototvping System (CADPS).
CAPS presents an alternative to the traditional software development lifc-cycle and is
based on a Prototype System Description Language (PSDL) and a prototyping meth-
odology.

The CAPS prototyping methodology, as illustrated by Figure | on page 3 is an it-
erative process. The software developer constructs a prototype based on user require-
ments, then the developer and uscr examine the executable prototype together. During
this examination, adjustments are made and the prototype is modified until both the user
and developer agree that the user’s requirements will be met.

Prototype System Description Language (PSDL) was developed in conjunction with
this methodology because a language for supporting rapid prototyping of large real-time
systems has different requirements {rom general purpose programming or specification
languages. PSDL contains several unique features which meet these requirements. [For
example:

PSDL is based on a simple computational model which limits and exposes the inter-
action between system modules thus promoting effective modularization of the pro-
totype.

PSDL contaus baste data, control, and {unction abstracticns which allow specifica-
tion and representation of the intended system most important for creation and exc-
cution of the prototype.

Appendix A is an example of a PSDL prototype as it appears in [Ref. 4: pp. 27-40]
and Appendix B is a summary of PSDL grammar and language conventiors from [Ref
1: pp. 54-36], provided as additional clarification for this example. This prototype was
developed to model a simple system for treating brain tumors using hyperthermia and
was structured to meet the following requirements:

1. Shutdown: Microwave power must drop to zero within 300 milliseconds of turning
off the treatment switch.

rJ

Temperature Tolerance: After the system stabilizes, the temperature must be kept
between 42.4 degrees C. and 42.6 degrees C.

3. Maximum Temperature: The temperature must never exceed 42.6 degrees C.

4. Startup Time: The syvstem must stabilize within 5§ minutes of turning on the treat-
ment switch.

5. Treatment Time: The system must shut down automatically when the temperature
has been above 42.4 degrees C. for 45 minutes.

o N LElTL, v

. [4
o

Rty

-

£y 13

L

"

Z Pl % g o

L R

-8

SPECIF ICAT IONS

L

REMRITE
SPECIFICATION

e

SEARCH SOFT-
UARE DATABARSE

ANy
RATCHES
?

L
=}

IWPLERENTAT IO
OF PROTOTVYPE

Figure 1. PROCESS OF REQUIREMENTS DETERMINATION AND VALI-
DATION BY PROTOTYPING
[Ref. 4: pp. 26-27]

A prototype is created in PSDL using networks of operators communicating via

data streams. A data stream 1s a communications link connecting exactly two operators,

o ‘~q".- ".’,-'. (f T4 I ' | 4 Nn'.Jm’_,“ "' ﬁ'» - ,' - 1 n n' .' L '~‘ L% \ H'ﬁ' [N S i By) \ Wy "

% __ -"\'i‘ ¢ J‘"

Sprva) el ipdd B gt

. - - " -y - ’ W T I LY », » %, - A) - *, 1 ~ 3 » e
ah Yy tav vatyr ey Y A A

a producer (one which produces a data value), and a consumer (one which consumes
or receives the data value). Data streams also carry data values which represent EX-
CEPTION conditions. PSDL exccptions are values of a built in abstract data tyvpe cailed
EXCEPTION. This type has operations for c¢reating an exception with a given name
(e.g. "overtlow”), and for detecting whether a value is normal (i.e. belongs to some data
type other than EXCEPTION). [Ref. 4: p. 13]

The other PSDL data types include the unalterable subset of the built-in tvpes of the
Ada® programming language (Ada® is a registered trademark of the United States
Governinent, Ada Joint Programuning Otfice), user defined abstract types, the special
type TIME (the other special type being EXCEPTION as previously described), and the
types that can be built using the immutable type constructors of PSDL. The PSDL tvpe
constructors were chosen to provide powerful data modecling {acilities with a small set
of semantically independent structures. [Ref. 4: p. 13]

Each data type or operator is cither composite or atomic. Composite operators are
implemented by decomposing them into networks of miore primitive operators (using
PSDL). Atomic operators are created by retrieving an implementation {rom a software
base containing reusable software components implemented in an underlying program-
ming language.

In in order to meet timing constraints of the prototvpe under construction, an op-
crator can either be periodic, or sporadic. A PSDL operator is periodic if a period has
been specified for it explicitly, or if it inherits a period {rom a higher level in the de-
composition of the hierarchical prototype. If neither of these conditions are true, then
the operator is sporadic or data driven. A sporadic operator is executed (triggered by)
the arrival of a new data value, possibly at irregular time intervals, whereas periodic
operators are triggered or executed at regular time intervals (specified pericds). A peri-
odic operator must be completed sometiine between the beginuing of the period and a
deadline (which defaults to the end of the period). Periodic operators have traditionally
been the basis for the design of most real-timic systems, but the importance of data
driven operators tor this tvpe of svstem is also beginning to be recognized since cvent
driven in terms of informal software design methodology, or interrupt driven in terms
of hardware language, can be treated in this category. [Ref. 4t pp. 6-13]

The foregoing features make PSDL particularly appropriate for real-time systumn
design. Its structure is highly suitable for multiple modifications during prototyping it-

crations because it consists of basic building blocks that allow descriptions of ab-

S5 Sy

R
=

-

T e T Yo R R R

YNY Y LT R
1 s

"'.{?T?‘('_: -

»

-~

RIS n’-"- P S Y PN LA

o>
e

AR TSRS R gy P 2t
R W WL - A ar = -

T TRy EYYT

.
™

at
«

- - .- "' - . - - . - - - - - - 2 » R ™ Tw ™ ‘."\ 1 '.‘ \.\ l“-'-L“. \.‘-.'-\\"'\"&
Ny R S A A A o T N A N R A AT A

-

stractions through a top-down design based on data flow. Additonally, the formal .
1 structure of PSDL for specifving the user’'s real-time constraints provides a basis for
automating the production code to an underlying programming language c¢.g. Ada®. The X
execution of the PSDL prototype also verifies that the design of an embedded svstem (a -
system that is part of a larger system such as a guidance computer on a missile), within '

given timing constraints for the prototype components, will interact with its environment

-

in a wav that meets the timing constraints of the entire system. [Ref. 1: p. 3]

The other components of the CAPS are user interfaces, including a syvntax directed

‘Z‘ editor with graphics capability (for speeding up design entry and preventing syntax er- E
b rors), an execution support system for demonstrating and measuring prototype behavior :
L and for performing static analyses of the prototype design, a soltware design manage- X
a ment system for retrieving and adapting reusable softwarc components, and a compo-)
> nent base which functions as a repository for the reusable components {Ref. 2: p. 9]. .’;
The reusable software components in the software base can be written in any general X
‘ purpose programming language (provided that PSDL specifications for each module are 3
: included). Figure 2 on page 6 illustrates the CAPS architecture. :".
' For purposes of simplification, and because of its required use within the Depart-
o ment of Defense as a standard development language, Ada® has been chosen for imple- -
" , menting both the reusable components in the software base and the PSDL execution)
support environment. Ada® is a powerful programming language that provides unique :
features not found in other languages. These include exception handling, inter-task :
: communication, (both of which will be demonstrated to be particularly important to the .
! CAPS execution support environment), and [acilitics such as generic packages (reusable
'; software components). Several predefined generic units are already included as part of ;
K, the Ada® language definition e.g. CALENDAR which can be used to provide date and ;
3 time information. [Ref. 5: pp. 33-34] A
, An Ada® program is composed of one or more program units, most of which may)
X be separately compiled. Program units consist of subprograms, tasks, packages, and -
: generic units. A subprogram is either a procedure or a [unction. A procedure specifics :
. a sequence of actions and is invoked by a procedure call statement. A function specifics *
a scquence of actions and also returns a value called the result; therefore a [unction call N
Is an expression. A task, on the other hand, defines an action that is logically exccuted - :
in parallel with other tasks. A task may be implemented on a single processor, a multi- ;'
A processor, or a nctwork of computers. A package i1s a collection of computational re- H
7
o\
5 "
N L T e O A A A A S SR N

Al P ol & PRl AT s

. v

USER INTERFACE |4

PROTOTYPE SYSTEM
DZSCRIPTION LANGUAGE

v
REWRITE SUBSYSTEM

v v
ISCrTWARz D=SIGN EXECUTION SUPFORT
MANAGEMENT SYSTEM SYSTEM

|

v

PROTOTYPE
> DATABASE

- o,
v

o,

l- .,. "‘ $’ -

FER A

AT TEL AL,

SOFTWARE BASE

’ " AW T,
-‘..’\{'\, 1_"{,‘ o P

A

'/1-

el

Figure 2. CAPS Architecture

sources, which may encapsulate data tvpes, data objects, subprograms, tasks, or cven %

other packages. Its primary purpose is to express and enforce a user’s logical ab-

o el]

‘f).-{,

L4

]

»

.

6 "

L)

L]

Vo T e T Ll AR R N Ry { ", 4 . * "
o o e N N e 2 e e e

-

A 4 A

-

L

hY -

A

A A A

» >
o

Pty

R R R R R R L R R R R N L LW L IR L W LS Moy o W o OGS oo

stractions within the language. A generic unit is a “template” or “pattern” for subpro-

) grams and packages and serves as the primary mechanism for building reusable software

components. Use of a generic unit within an Ada® program is termed instantiation.

' . All Ada® program units generally have a similar two-part structure, consisting of a

specification and a body. The specification identifies the information visible to the client

v (interface) of that program unit and the body contains the unit implementation details. y
) (Refl. 5: pp. 55, 554]
.. [ronically, it is some of these same attractive features of the language that make Ada® h
E too complex and hence, too impractical, for its direct use in the rapid prototyping envi- "
¥ ronment. PSDL however has incorporated many of the desirable features of Ada® wlhile A

eliminating the associated complexity. The abstractions of PSDL allow a system de-

. signer to express ideas at the specification and design level rather than at the program-

ming language level. This substantially reduces the need for consideration of lower-level

x details and flow control that would be required if the prototype was developed using Ada®

directly.

B. OBJECTIVES

The primary focus of this study is the conceptual development of one component

of the execution support system of the CAPS, the dynamic scheduler. As it is currently

3 proposed, the exccution support system will be comprised of three components, a

': translator, a static scheduler, and a dynamic scheduler. The translator is developed in N

N [Ref. 6] and the static scheduler is developed in [Ref. 7} and [Ref. 8]. A secondary, but '

N equally important focus is the interfacing of the dvnamic scheduler with these other two o
components. Y

:. Within the CAPS execution support environment each of these components will b

perform several functions as shown in Figure 3 on page 8. The translator has four main

purposes:

1. To augment the PSDL code

E Rt L1t

[

. To implement PSDL data strcams

3 3. To implement PSDL conditionals (triggering conditions) y

4. To implement PSDL timers (accomplished through the use of a standard library
. package which communicates with a hardware clock and is included in any proto-
v tvpe that uses timers)

2 of T e
PR SLS
» *

L N T T T
e et

L a4
.

- TR SARAR A

v

S

L
e e

S A N TR A e e -.w."_\",-.' AN x‘-.‘_-‘."'\

CAPS
EXECUTION
SUPPORT
ENVIRONMENT
; [1
DYNAMIC STATIC TRANSLATOR
SCHEDULER SCHEDULER
-INVOKE STATIC -ANALYZES REAL- -AUGMENTS PSDL
SCHEDULER TIME CONTRAINTS ao0E
‘ -INVOKE BUFFER -DETERMINE SCHEDULE ~ -IMPLEMENTS PSDL
PRE-LOADING FOR TIME CRITICAL DATA STREAMS
PROCEDURES OPERATORS
-IMPLEMENTS PSDL
-HANDLE EXCEPTIONS CONDITIONALS
, -HANDLE H/W & -IMPLEMENTS PSDL
| OPERATOR TIMERS
: INTERUPTS DURING
, EXECUTION
-SCHEDULE NON-TIME
CRITICAL OPERATORS
-EXECUTE NON-TIME
CRITICAL OPERATORS

Figure 3. COMPONENTS OF THE CAPS EXECUTION SUPPORT SYSTEM

The static scheduler analyzes the real-time constraints declared i the PSDL prototype

and attempts to find a static schedule meeting the constraints of the time critical opera-

. A
tors of the prototype under construction.)
The dynamic scheduler performs four major functions for the CAPS execution sup- o
port system. The first function, which is to act as a "run-time executive”, is of particular y
importance to the other two CAPS components. As the run-time executive, the dynamic
8
)
)
Ca
o

iy' ".‘ .." 'J" A, —J'-f' "J"f.:\"' . -F)I“{J' \ \f Q‘Nﬁ.“ L f‘f.h-l\I -r\vi'__.r f.-‘\»' N" RO N .‘ \ ._"-‘ \' -".\‘" >

......

v
alal

R A R T R R O T oy e N R T T R RO A T R T SR G IO o oy . Y 1 et A s At B

‘ scheduler will invoke the static scheduler, and it will invoke buffer pre-loading proce-
dures required by the translator for implementation of data streams. Two other func- J

tions include exception handling and hardware or operator interrupt handling that may

y . occur during prototype execution.
;, The fourth and perhaps most important function of the dynamic scheduler will be ¢
‘: . the scheduling and execution of the PSDL operators which are not time critical (i.e. do ;
b not have real-time constraints). This schedule will be constructed and executed during o
F prototype execution using “spare processing time” created as a result of early completion
: of time critical operators by the static scheduler. Because PSDL assumes that time
: constraints of critical operators are absolute when given, the static scheduler allocates ,
o processing resources based on worst case or maximum execution times. On the average, d
these worst case processor loads tend to be rare. When a time-critical operator or group X
of operators finishes executing before this worst-case time allocation, the static scheduler 'f
> can “transfer” control of processor resources to the dynamic scheduler in order to utilize :
: the resulting spare capacity. .
9 The requirement for explicitly passing control to the dynamic scheduler when the
' static scheduler reaches an idle state is necessary because the Ada® language does not H
: have features for determining when a task or process with an undefined priority should)
h] be executed [Ref. 5: p. 282]. Once control of processing resources is passed to the dy-
; namic scheduler, spare processing capacity can be allocated among the non-time critical ::
M, operators based on a scheduling process that is not restricted by the requirement for ;
E meeting real-time constraints. !
) C. BENEFITS OF THIS STUDY 2
‘ The bencfits to be derived from this study are twofold. The first of these is that .
development of a dynamic scheduler for the proposed CAPS aids in meeting the need for ;
a4 development of a rapid prototyping tool. An effective CAPS would result in significant \
< improvements and cost savings in the development of hard real-time software systems
P> which support C3 mission requirements as well as software development f{or other DOD, 4
s and private industry applications. :
P The second benefit is the focus placed on more effective processor utilization as a 3
N result of scheduling non-time critical tasks or processes during slack or spare processing 3
N periods. Previous research in the arca of real-time system scheduling has greatly em- -\
N phasized, and rightly so, the requirement for meeting the rcal-time constraints of a sys- .
2 tem or network of systems. This particular emphasis has minimized the importance of .
: ‘
] 9 .:
. 9
: N
. ¢

~ MEALRSEL R

- Y G U T AT AT 0 CATa T T AT A AP LA -"-"\'.'\
B e N A i R L N e MM IN NN

A N\ _\ '-.;_\ Y .".\::.;,.

NN L R T S N T T O N T T T T Y T T AN T R R xR

processor under-utilization which often occurs as a result of ensuring that real-time

constraiits are met. The problem of under-utilization is wasteful and could become v

quite costly if it is allowed to occur on a regular basis. Design and interface of a dv- .

namic scheduler for use within the rapid prototyping environment may provide a viable

solution to this problem.

-

D. OVERVIEW 3

: The remainder of this study is described by the following overview: Y
" A survey of the background and development of scheduling problems and algorithms l:_
Development of a dynamic scheduler based on concepts provided by this survey and b

the use of Ada® as an implementation language g

A summary which describes the questions answered by this study, future questions or <
design areas that need to be addressed, and a brief description of a communications '
‘ system for demonstrating the feasilibity of the CAPS as a computer-aided design tool.

e

LA

- o
-
t.

[v

Ll
-

i~

T T R

II. BACKGROUND AND DEVELOPMENT OF SCHEDULING
ALGORITHMS

A. THE SCHEDULING PROBLEM

A scheduling algorithm provides a set of rules that determine a process or group of
processes to be executed at a particular point in time on a process control computer
system or for a network of systems [Ref. 9: p. 194]. Criteria which have historically been
used to generate process schedules include maximizing process flow (i.e. minimizing the
elapsed time for the entire processing sequence), or minimizing the maximnum lateness
(lateness is defined to be the difference between the time a process is completed and its
deadline when the deadline is missed) {Ref. 10: p. 112].

Development of an algorithm which focuses on maximizing process flow is applica-
ble to the problem of scheduling PSDL operators without real-time constraints since
optimal use of idle processing time is an objective of the CAPS dynamic scheduler.
However, minimizing lateness is not a consideration for the dynamic scheduler since
operators which are not time critical don’t have deadlines to meet. For meeting the re-
quirements of the CAPS static scheduler, neither of these criteria is important partic-
ularly since operators with real-time constraints are by definition not allowed to be late.
The criteria which are important for process scheduling within the CAPS execution
support environment include meeting the deadlines of operators with recal-time con-
straints, ensuring that no data loss occurs, and making optimal use of spare processing
resources. Clearly, finding or developing scheduling algorithins which optimize this sct
of criteria presents an interesting and dillicult problem.

Another previously defined [Ref. 9: pp. 194-199] consideration for generating process
schedules and developing scheduling algorithms is based on precedence or priority of
processes to be executed. Two primary priority classifications are static priority and
dynamuc priority. In the first case, prioritics and start times of processes are known in
advance and is not cxpected to change during execution [Ref 9: p. 194]. Within the
CAPS, a scheduling algorithm based on a static priority scheme will be used by the static
scheduler to create a schedule that meets the timing and precedence relationship re-

quirements for the time critical opcrators. In the second case, priorities of processcs

change from time to time, depending upon certain execution conditions (e.g. the avail-

ability of idle processing capability) [Ref 9: p. 194}, This priority scheme will be used

-y - m - e - -~ T T - --,..-.---.rnr..ﬂdr~’_v‘r_|frr4‘.'\q‘(-'.f,ff L ANy
RV Sy 0 _,.V WOV ,.. " Y \-s.-.{s Vre 5. \,,5.\ ~.>\. N S N S S Ay \1\

0
D
U
[J

PN

L am e am

3 [

ML A

by the CAPS dynamic scheduler to schedule non-time critical PSDL operators and to
perform other functions during prototype execution such as exception or interrupt han-
dling.

B. SCHEDULING METHODS
The requirement for different types of schedulers and scheduling algorithms has been
examined in a myriad of research. Most of this work has been directed at the problem
of scheduling processes or operations which must meet critical or real-time deadlines,
but these efforts also have relevance to the problem of scheduling processes which don't
have real-time constraints. The primary reason for this is that while an individual
process (e.g. a PSDL operator) may not have a time critical deadline, scheduling of the
process or group of processes should be completed within a predetermined block of idle
processing time in order to make optimal use of this spare capacity. [he following ex-
amination and description of scheduling research provides a basis for designing a dy-
namic scheduler to meet this objective.
1. DECOMPOSITION STRATEGIES

A primary consideration in solving the scheduling problem is how to decompose
a set of operations (computations) into a schedule which meets the real-time constraints
of a given system or program. Mok in [Ref. 11 : pp. 125-133] proposes three strategics
for the decomposition of a set of computations based on timing constraint specifications.
Each of these strategies uses a “graph” model to describe the set of computations and a
“process” model to describe the output gencrated by the translation of the set of com-
putations.

The graph model consists of a communications graph, a task graph, and a set
of timing constraints. Timing constraints are represented by the expression (t, t + d)
where t is the start time for a process, d is its deadline, and t + d the interval or period
in which the process is executed. A task graph defines the precedence relationship
among computational events that must occur in order to satisfy a given timing con-
straint. It 1s composed of "nodes” and “edges” which respectively denote corresponding
functional elements and transmission paths for data in the communications graph [Ref.
11: p. 126]. The objective of this structure is to ensure that data flow requircments are
met. This is also one of the objectives of the PSDL structure, (the other objective being
that real-time constraints will be met). PSDL is based on these concepts with an oper-

ator representing a “functional element” of the language, and with data streams repres-

12

a X) .l,

“3r M

enting communications paths which transmit or exchange information between '
)
v operators. J

The Process Model is generated by the translation of the time-critical compu-

. tation requirements of a real-time system. The resujt of the translation is a set of time- ’
) critical concurrent processes [Ref. 11: p. 125]. The translation that results in the process ;
. model is analogous to the generation of the of the CAPS static schedule since this '
Y i schedule provides the means for meeting a system’s real-time constraints. !
. Based on these concepts, the first strategy to be discussed is Decomposition by ;
» Critical Timing Constraints. This strategy works in the following manner. For a partic- "
,‘ ular program, periodic and sporadic processes are created to meet given timing con- ;
R straints. The period and deadline attributes of a process are set to the corresponding ¥
. parameters of the timing constraint (t, t + J). These processes may have functional el- v
b ements in common so a monitor is created to ensure mutual exclusion on the execution '-
:‘: of any program element called by two or more processes. When a program created in :.:
i this manner is executed, each process is executed according to its spccified timing con- b
straints even though this may result in duplicate execution of certain computational :"
- events. [Ref. 11: p.128) ‘
This strategy works fairly well on single processor with any scheduling discipline '._
' as fong as the processor doesn’t idle while there is an activated process [Rel. 11: p. 128]. \
? The disadvantages associated with the use of this strategy are the duplication of some
: computations within processes that have compatible timning constraints and the com- “,
: munications costs involved for enforcing mutual exclusion. N
‘ A second strategy, Decomposition by Centralized Concurrency Control works
:' in the following way. Periodic timing constraints that are compatible with one another ;
are grouped together. Two periodic timing constraints are compatible if their deadlines 3
'* (d) are equal, (e.g. d1 = d2), if their task graphs have some nodes in common, and if the '
> period (p) of one can divide, or be divided by the period of the other (pl/p2 or p2/pl). -
'; The compatibility relation partitions the periodic timing constraints into a set of equiv- M
Q alence classes. For each cquivalence class, a periodic process of compatible periodic :
,‘ timing constraints is created, and a sporadic process is created for each asynchronous \
‘_ timing constraint.
\ In general, this strategy improves efficiency two ways. [irst, »v meorging the v
'f . computation of compatible timing constraints into a single process, redundant compu- N
tation can be eliminated. Second, since concurrcncy control is being centralized, proc- h
)
;' 13
2
Y A
‘:

2 5"V LI A"

)
- . (M W R ; ¢ W TN W R W W (W ; LTRSS AL 'J" h % ! .’
38000, 0 0 N o O A o OO A T e X 'h |.n~ A0 T AEBGARTTACIL W ST hWhahnh,

€
[}
.
¥
.
.
.

»_a

o

esses tend to be independent of one another and the interprocess communication

overhead required for concurrency control will be smaller. One disadvantage associated
with this strategy is that attempts to merge compatible timing constraints into a single

TVALE LSS AN

program by eliminating as much redundant computation as possible, may not vield the

\
; shortest program possible. A second disadvantage associated with this strategy is its :':.',
; complexity, which makes it more difficult to understand and to modify when changes e
! are required. [Ref. 11: pp. 129-130] b
The third strategy is Decomposition by Distributing Concurrencv Control. In
k this strategy, a periodic process will be created for each node (functional element) in the
i communication graph. Since a functional element F, may occur in two or more task ,,
! graphs, the periodic process created for F will e assigned a period attribute equal to the
-, smallest period among the periodic timing constraints in which F occurs. When a peri- ::
! odic process PF, is activated, it first synchronizes with an appropriate set of processes ¥
4 preceded by it. A sporadic process is created for each asynchronous timing constraint A
‘ as before. If a functional element occurs in both a periodic timing constraint and an
i asynchronous timing constraint, then a monitor is created to enforce mutual exclusion .‘
‘ on the execution of the corresponding program element. [Ref. 11: p. 131]] Uy
i Use of this strategy results in the following advantages. By assigning a separate :=
process to each [unctional element, an attempt is made to maximize the computation ’
«; that can be performed in parallel. Redundant computation is reduced since task graphs _.
of compatible timing constraints that contain the same functional elements are dectected at
in the construction of the synchronization code for each periodic process. I as many j;,
processors are available as there are processes, then this strategy can accommodate a ,._',
wider range of tining constraints than the other two strategies. The primary disadvan- E ;
ﬁ tage with this approach is again one of complexity and the resultant modification difii- t
| culties its use implies. [Ref. 11: p. 132] R
2. THREE PROCESS MODELS !
¥ Another study by Mok [Ref. 12: pp. 5-17] develops three process models using S)
, various scheduling algorithms and techniques. These models are based on the idea that N
there is a need for an off-line scheduler and a run-time scheduler (or meeting the periodic N
and sporadic timing constraints ol most real-time systems. As delined by this work. the . "i‘
ofl-iine scheduler examines the instance of a process, or system and creates a run-time N

N scheduler together with a database for making scheduling decisions at run time. The

run-time scheduler is the code for allocating resources in response to requests generated

-

L))

l.' .“ - *l h . .DQ. .'\' ~.*.~'.- .

T U A et S S S e S Syt o

';'... “ -0l ‘\“HAA Won P ¥ v. "t a8y “a g’ L L B Ve N W M W W W W Y talgt Bat o Ra® B4% fat §oB et AR AT Y $°gad’ .-:
[}

' ¢
: -:
.\ \
. at run time, e.g. timer or external device interrupts. A run-time scheduler is totally on- ¢

. line if its decisions do not depend on prior knowledge of the [uturc request-times of the
processses. A run-time scheduler can also be clairvoyvant, which means that it can pre- X

dict with absolute certainty, the future request times of all processes. A clairvoyant

. scheduler represents the best possible case though and is usually impossible to iunple- :
: . ment in practice. And finally, a run-time scheduler is optimal if it always produces a !
. feasible schedule whenever it is possible for a clairvovant scheduler to do so. !
n The first model described by this piece of research is the Independent Process
3 I Model. It was shown that two possible algorithms provided eflective scheduling tech-
, niques for this model, the earliest deadline algorithm and least slack algorithm. The

earliest deadline aigorithm runs any ready process with the nearest deadline and the least

slack algorithm runs any ready process which has the least slack time available before

it will miss its current deadline. In both cases, ties are broken arbitrarily and the as- N

§
sumption is made that the scheduler can choose to preempt a process by any other ready)

A R

process at integral time instants.

Although both of these algorithms are effective, the preceding assumption il-

- g

) lustrates why neither of them represents an optimal scheduling method. In order for

-

these techniques to be optimal, the scheduler would have to be clairvoyant. [or exam-

.o -

) ple, the position of an aircraft is updated by a periodic process which computes the X

) and Y coordinates from sensor measurements. A sporadic process may read the X valuc, 3

i

b be preempted by the tracking process, and then read a new Y value which is inconsistent]

) .

‘,. with the original X value. Clairvovancy implies that an exact prediction could be made
: as to when the sporadic process which updates the X value will occur, which is unlikely.

¢
A possible means for eliminating this inconsistency is to prevent processes from pre- '

g)
X empting one another, but enforcement of such a mutual exclusion constraint results in Q

" e . . . Y

; significant decreascs in processing cfficiency. {Ref. 12: p. 7] :

A feasible, yet still not optimal, alternative to this approach is provided by the .
I

; Deterministic Rendezvous Model. This model attempts to alleviate the problems asso- '

L)

\ ciated with the Independent Process Model by using the earliest deadline algorithm with)
> dvnamically assigned (determined during execution) process deadlines, and through the :
A implementation of an Ada®-like rendezvous primitive (communications instruction).

" - . . !
. The rendezvous primitive cstablishes synchronization and precedence relation- -4
. shups among cxccuting processes. [t operates on the same principle that is required for 3
4 the establishment of certain data comununications links. [For example, if Process A .
4)
!]
D)

" 3 v
l. .!
I' '
l. \
:) ?'

) »

A - 4

1 . o n . U AU L A AR -t A . [

‘:“J-"'-".‘u _,ln'.." LR .‘,'l \ LA ?‘I‘?’I‘!" A'n.,' M s‘!.t..'a \...'n '.c ('n k "lu ?.‘. (X .- u‘%n L .'-l"“ o "\) v ‘\ ‘. .ﬂ t B " ‘..‘

[t 04" ptat LRav te" A0 e Rt sy teV e gt g Uit yS ot B afiraN it gt N gt g N gl R GV 8- Rk S A SOATE R A A R ks A Al sl gkttt Sl Sl S Sad e Gd bl Sk S RNl) 8 Sad ‘!‘.

.I
:
wishes to communicate or rendezvous with Process B, A executes a rendezvous primi- :
tive. A must then wait for B to execute a rendezvous which indicates that it is ready to 7 :
exchange information or rendezvous with A. The precedence relationships among ,
processes are created by the requirement that all the computation before the rendezvous ’
primitive in each process must precede all the computation after the corresponding ren-
dezvous primitive in the other process [Ref. 12: p. 9]. ?:E
At run-time, this model works in the following way. Processes are grouped into . :
scheduling blocks with each block initialized with a deadline. During execution, the
deadline of a scheduling block can be moved up if the block must precede another block "
which has a nearer deadline but which is not vet ready to run. The rendezvous primitive -.
provides the required synchronization and precedence information which allows this ;
scheme to work. It should be pointed out though that this primitive does not guarantce .',
mutual exciusion for a scheduling block. [t also cannot be used to establish communi- :A
cations between a periodic process and a sporadic process since by definition, a periodic y

process must be exccuted regularly while a sporadic process may never be exccuted.
[Ref. 12: pp. 9-10}

The third model differs only slightly from the Deterministic Rendezvous ap-

Kok A s

proach. This model called the Kernelized Monitor, uses an operating svstem kernel as

o

a monitor (or enforcing mutual exclusion of processes during execution. Processor time

1s allocated only in uninterruptible quantums, say of size q, with q chosen to be bigger

agnged JCE NS RRL Jor 2

than the largest monitor. For simplicity, the required computation times for proccss

scheduling is in exact multiples of q so that each process takes an integral number of ':
quantums to cxecute. A process to be exccuted forms a chain of mini-scheduling blocks iy

each of which requires a quantum (the basic time unit of processor allocation). These 5'
mini-scheduling blocks form a partial order imposed by the (intra and interprocess) 3

precedence relationships and each is given a request-time and deadline. The mini- ‘g '

scheduling blocks are executed using the earliest dynamic deadline algorithm as previ- » |

ously described in the discussion of the Deterministic Rendezvous Model. ,:*:

Onc difference between the execution of mini-scheduling blocks and the exe- ("

cution of blocks created by the Deterministic Rendezvous approach is that preemption ’:
should only be allowed to occur after a mini-block has been allocated an integral number L

of time quantums. Another dilference is that between each chain of mini-scheduling _:.h"

blocks an interval called a “forbidden region” is included in in the schedule. The purpose .

of this interval is to create idle processing time during which a scheduler should not al- ' l
>

N

16 N

R

‘E

o

&

i X) ’ .vo .o.o . -‘:’\‘\‘\\‘ ."'}‘\ \‘\ i 0.0 "‘\)' 0. ‘ \ ‘ I- 'F-" o) Al . - SLAN S Lt e .

- - ea e

locate a new quantum of processor time to any process so that a future deadline can be
met. [Ref. 12: pp. 10-11]
3. EARLIEST DEADLINE-PREDECESSOR PRIORITY ALGORITHM

Another research effort by Mok demonstrates the use of the earliest deadline

algorithm in a slightly different way. This effort was directed at periodic real-time sys-
tems where input data arrives at f{ixed rates, but otherwise there are no cxplicit tunng
constraints. [ts application is also limited to uniprocessor environments.

The Earliest Deadline-Predecessor Priority (ED-PP) scheduling procedure can
be described by these steps. First, a very simple method (as compared to use of the
rendezvous primitive) is used to determine preccdence relationships among processes.
Specifically, processes are ranked in a topological order of their corresponding functional
clements in a graph model such that whenever two processes have the same dcadline,
higher priority is given to the process which appears carlier in the topological ordering
(hence the name predecessor priority) [Ref. 13: p. 184]. Next, a round robin scheduler
is employed in the following way. Assume that a quantum (the previously detined time
unit) is composed of infinitely many slices. A round robin scheduler allocates ¢ p slices
of each quantum to each process P. Each P will be guaranteced to receive ¢ quantuins
of processor time in every period of length p, thus mecting its deadline. The above al-
location can always be done because available processor time U is < = 1. [Refl 13:
p. 180]

The round robin schedule is then transformed into the desired schedule by
swapping time slices in the following manner. At any quantum, let P be the process with
the nearest deadline as chosen by the ED-PP scheduler. Then, swap as many slices of
P from the next quantums as needed to [ill just the quantum under consideration. No
process will muss iis deadline since the deadline of p 1s the nearest. This swapping is re-
peated one quantum at a time from the beginning of the schedule until the valid ED-PDP
schedule of desired Iength is obtained. [Refl 13: p. 186]

4. THE RATE MONOTONIC SCHEDULING ALGORITHM

This algorithm works in the following way. [For a sct of periodic tasks, a fixed
priority ts assigned to each task, with a higher priority being assigned to tasks with
shorter periods. The rate menotonic algorithin is an optimal static priority algorithm in
a uniprocessor environment with a set of n tasks with total utilization less than or equal

to n(2'" — 1). When n becomes large, this bound approaches In 2 (approximately 70%%).

o e T A M W P L T e TN T Tt A A W S L W Y L N AN Y,

“g i gt ate’
\ T . LY L) » -

One method for implementing this algorithm incorporates a “time-division
multiplexing” scheme to schedule periodic tasks (processes). This approach is similar to
the round robin scheduler used by the ED-PP algorithm. This is accomplished through
the creation of a set of time division multiplex (TDM) slots and then “hand-packing” all

‘1.'.. - 94{-‘.-" COA L T X Y

the important tasks into them. This is typically done in the context of a cvclical execu-

tive (the cyclical executive operates like the round robin scheduler), which generally uses

ScCScr S

few frequencies. The fastest cvcle is usually called the major cycle and the slower ones
are called minor cycles. The major cycle is assigned the highest priority. Given the
highest priority, a major cvcle with period P will be regularly given 1 slot everv P units

of time. This in effect creates a virtual processor with processing bandwidth I, P. The

period of the major cycle is determined by two factors. [irst period P must be short
enough so that it can accommodate the highest [requency periodic tasks. Sccond, the

major cvcle must also accommodate tasks which have lower (requencies but are critical

-

: to the mission at hand, since the major cycle has the highest priorntv. A handcrafted
table 1s then constructed to schedule both the high [requency tasks and the critical tasks

over the virtual processor. The construction of the scheduling table often takes many

f't%'l'- ",.1'1,[({" N,“-.’ J XA

iterations, over the adjustment of the period of the major cycle, the modification ol the

Ay
scheduling table and the optimization of the code of certain tasks. [Ref. 14: pp. 184-185) 3

Using another approach, this algorithm can be employed to schedule aperiodic ;"
(sporadic) tasks. Aperiodic tasks consist of a stream of jobs arriving at the processor Np!

according to some random process such as the Poisson pr cess. In this case, there is E
. no determunistic upper tound on the worst case processor utilization task even though :
each job of an aperiodic task has a bounded worst case execution time. Thus, it is im- :.
. possible to guarantee that every job's deadline in an aperiodic task will be met. The f::
concept behind dealing with aperiodic tasks is to reserve adequate processor time f(or -?:

1 each group of tasks so that fast average response time can be ensured. ;
' A simple way to realize this objective is to crcate a set of periodic tasks, each "
of which serves a group of aperiodic tasks. Lach of these server periodic tasks will be N
run according to the basic principle of the rate monotonic algorithm. Associated with S
each server periodic task, there is a ready gueue for associated aperiodic jobs. LCach of ;.‘_
‘ these aperiodic jobs in the associated ready qucue will be treated as il it is a periodic job ! '
; of the server periodic task and dispatched accordingly. That is , if a periodic server has - E
) period P and nominal computation time C, then the associated aperiodic job can be ex- "
' ccuted C time units in every period P at the priority level associated with period P, The :::
:

18 A

A

¢

.
4

o
LA TR NI e TRV N5 R R O DR O SR VO TR R TR i GRS Sy e DO,

X .

ration C,/P represents the processor time allocated for associated aperiodic tasks. |Ref.
14: p. 183]
5. “NEXT-FIT-M”

NEXT-FIT-M is better classified as a decomposition strategy than a scheduling

[T T
Pel e sl ¢
A AN o p

algorithm. [t was developed for use in conjunction with the rate-monotonic algorithm

in a multi-processing environment. The requirement for this strategy is based on the fact

PR AL

that the rate-monotonic algorithm behaves poorly in multiprocessor systems if the rule
is followed of not allowing a processor to idle when there is a task ready for execution.

NEXT-FIT-M is based on the following assumptions:

Tasks are time-critical and the requests of each task are periodic, with a constant
interval between tasks,

Deadlines consist of runability constraints only, i.e. each request must be com-
pleted before the next request of the of the same task occurs.

-

. The tasks are independent in that the requests of a task do not depend on the itni-
tiation or the completion of the requests of other tasks.

SN

Computation time for the requests of a task is constant for the task. Computation
time here refers to the time a processor takes to execute the request without inter-
ruption.

1

e e SN

. Task utilization is defined by two numbers, the computation time of the request(c),
and the request period(t). The ratio ¢, t is called the utilization factor of tiie task.
[Ref. 9: p.194]

b -

phy i
4
-
r

In a multiprocessor environment, this utilization factor provides a means f(or

decomposing tasks into classes. A class is defined for each available processor in the

system, and tasks belonging to a given class are scheduled on the processor with the

"‘l' ok % w9

appropriate class designation. Task classes are crecated based on a range of utilization
factors e.g. class A tasks have utilization factors between .4 and .1, class B tasks range
between .2 and .4, etc.. Actual utilization ranges are established using a logarithmic
scale derived from the formula n(2Y — 1) as described by [Ref. 9: p. 195]. When de-

YWY

composition and assignment of task classes to processors 1s complete, execution pro-

ceeds on each processor according to the rate-monotonic algorithm.
6. A TIME-DRIVEN SCHEDULING MODEL
Another approach to scheduling is illustrated by the Time Driven Scheduling

Model and its two associated algorithms, BEValuel and BEValue2. [Ref. 10: pp.

LT S A A AL A

l

112-122] This model is based on a linear mathematical (unction. The concept of in-

Vs

creasing or decreasing linearity is used to describe the precedence relationship among a

sct of processes. The input for the model is a sct of preemptible processes P, resident in

.

- oy .

CrLS LS

y) "-‘, “F -‘--J.*_.q‘;-q '(\'.n AR -.. AT S -' ay v) AN .i‘ ‘. "J. AT E™ .-* --.-. .-"J ‘l.. u‘~ --. 'H. 'J“J‘w" -._'.\..\..\-N'...'--;‘-_ '

a computer with a single shared memory and one or more processing ¢lements. Lach

i process P has a request time R, which is an arbitrary time at which P has been requested «

:'. to be executed and a processing or computation time, C. [or each P, a value function, y

l V(t) is created where t is a time for which a value is to be determined and V defines the '

) value to the system for completing P at time t. The nature of V is determined by which "
scheduling algorithm is used, BEValuel or BEValue2.

! These two algorithms take advantage of three value function and scheduling ’)

characteristics:

1. Given a set of processes (ignoring deadlines) with known values tor completing

them, it can be shown that a schedule in which the process with the highest value
v density V,/C, (in which V is its value and C is its processing time as previouslv de- 3
: scribed) is processed first will produce a total value at every point in time at least
y as high as any other schedule. (i.e. a Value Density Schedule)

4 2. Given a set of processes with deadlines which can all be met (based oa the sequence ¥
[of the deadlines and the computation times of the processes), it can be shown that N
b a schedule in which the process with the earliest deadline is scheduled first (i.e., an)
Earliest Deadline schedule) will always result in meeting all deadlines. :::

3. Most value functions of interest have their highest value occuring immediately
prior to the critical time.

The BEValuel Algorithm exclusively uses observation 1 above, and is thercfore

ale 8 = w

Y- a simpie greedy algorithm, scheduling first the process with the highest expected value

density. 1t has been shown that this algorithm performs reasonably well in many cascs

in which the value function is a step function, or if the function is rapidly decreasing £

following the critical time, inspite of the fact it makes no use of critical time itsclf. The)

critical time does, of course, enter the algorithm through the expected value computa-

<

tion, which uses the value function and the assumed processing time distribution to

compute an expected value. [t was also shown oy experimental results, that this algo-

- -

rithm fails most notably in step function situations where processor loads are low or at

an average level, and a number of processes with close deadlines are in the request set.

The BEValue2 algorithm attempts to rectifv this situation by the implementa-

tion of the following modification. This algorithmn starts with a deadline-ordercd se- :

quence of available processes, which is then scquentiaily checked for its probability for .

overloading the processor. At any point in the sequence in which the overload proba-

bility passes a presct threshold, the process prior to the overload condition with the) -

lowest value density, will be removed from the sequence. This process is repeated until -

the overload probability reaches an acceptable level. Because of this modification, this

- algorithm tends to out perform BLValuel since it always meets deadlines as long as no

¥ .

‘--.---_q--q-.-..-~—'.».', - oA AR R A N S S
R o St A e T S T A N G s A v

processing overload occurs. However, when an overload condition occurs and gradually
worsens, performance of this algorithm is similar to BEValuel. [Ref. 10: p.116]
7. DYNAMIC SCHEDULING OF TASK GROUPS

A more complex, vet extremely useful approach to process scheduling is de-
scribed by [Ref. 15: pp. 166-174]. This research examined the problem of dynamic
scheduling for groups of tasks in distributed real-time systems. The scheduling algorithm
developed to meet this requirement is broken down into several smaller algorithms, a
pre-processing algorithm, a distributed scheduling algorithm, and a compression algo-
rithm.

The pre-processing algorithm divides processes into clusters and computes the
required time to execute each cluster. Clusters are ordered into a precedence relationship
based on these computations. This ordering is somewhat arbitrary and can be modified
(through the the use of the compression algorithm) if necessary. Processes within a
cluster are ordered according to real-time constraints by a method similar to that dJe-
scribed by the earliest deadline approach. Based on this computation, this algorithin
makes the decision whether or not there is enough processing time available to schedule
a cluster of processes. If there is, a “dispatcher module” begins or enables the execution
of the cluster.

Once a cluster begins executing, duc to precedence constraints, processes within
the cluster must synchronize in real-time in order to communicate with one another.
When one process finishes executing, it sends an enabling message, as well as output
data, to a successor process (the one which is next in the precedence ordering). A suc-
cessor process can begin execution only after the cnabling message from its predecessor
has been received. Another module called the inter-task communication handler, is in-
voked each time a process [inishes execution. This module evaluates incoming enabling
messages and updates the number of (inished predecessor processes when more than one
is required for the exccution of a particular successor task, and it sends enabling mes-
sages 1o successor tasks.

In the instance of a distributed system, the distributed scheduling algorithm is

invoked when there is not enough processing time available to successfully execute a

cluster. This algorithm attempts to (ind another location in the svstem lor the cluster

to be executed.

When it appears that a cluster cannot be successfully exccuted at any location,

the compression algorithm is invoked. Bccause the computed execution time for a

‘\
.
L o e A R A o e B Y T e e T

4"' v i Po¥ B gt haV got-
.
¢
)

%SO

A

» - -
N EEL

-l e L

.I
'a
P,

*, -Ir G '1: .f .\f --f'v‘ S

g e 0a® BaV Ra¥ 0a% WP ka® bad gt 11 o 0e dav o butanar bat 0T du? et 0a® s dat Rat 0 v ga'a'ala’ J

v gat gav " gat o S v gan 0 .
W W W, W M oW BN W, Wi Wy Wi Wi W Mg Wy Wy Wia M ¥ i Mo

cluster is only an estimation, this algorithm is designed to compress the execution time
for the entire cluster, or for individual processes when possible, within the cluster. [Ref.
13: pp. 167-169, 173].
8. A RECEIVER-INITITATED SCHEDULING STRATEGY

Another scheduling method is described in a comparison-oriented piece of re-
search. Chang and Livny [Ref. 16: pp. 175-180] examined Sender-Initiated and
Receiver-Initiated scheduling strategies in a multiprocessor cnvironment. The
Receiver-Initiated approach is of primary interest and works in the following way. Upon
the completion of a job (process) the load of the processor is examined to determine if
it is underloaded. When the number of jobs left in the queue is smaller than some preset
threshold, the processor is tagged as underloaded. When this condition occurs, the
underloaded processor polls other processors in the system to offer "help” (i.e. processing
resources). This technique was proven to be an effective method for sharing and dis-
tributing resources among processors in a multi-proccssing environment. The basic idea
appears to be a reasonable approach for sharing resources among processes as well.

9. APPLICATIONS OF THESE METHODS FOR THE CAPS SCHEDULERS

The foregoing scheduling methods were described to provide background infor-
mation on the development of scheduling techniques and also to provide a basis for the
development of the CAPS dynamic scheduler. Some of the techniques are also useful
for describing the operation of the CAPS static scheduler and how the static and dy-
namic schedulers will interact in the execution support environment.

(3]
to

I-“{ -'r‘. - I’I - p”‘“ ‘f\l‘\.. !"‘." .\-¢ "i."‘f"l‘ ‘l' " -!. ‘(‘-.\-".{.'\‘.‘\ -.;_'"..\".“"1' .-“ -

O W s T

RN R A YR R R T

III. THE CAPS DYNAMIC SCHEDULER

A. SCHEDULING FUNCTIONS

Within the CAPS execution support system, the dynamic scheduler will perform se-
veral functions. First, it will act as the “run-time” executive that invokes, or starts the
static scheduler and buffer preloading procedures for the translater. Second, it will cre-
ate and invoke a schedule for the non-time critical operators of the PSDL prototvpe,
third it will handle exceptions (both defined and undefined types) for all of the the CAPS
components, and fourth it will handle both hardware and operator interrupts that may
occur during prototype exccution. These functions are illustrated by Figure 4 on page
24.

The proposed operation of the dynamic scheduler is outlined by the hierarchal de-
scription included as Appendix C. This design is based in part on MoK's “run-time
scheduler” as described in [Ref. 12: pp. 3-17]. It provides the code for allocating re-
sources in response to requests generated at run time, e.g. hardware or operator inter-
rupts, and its scheduling decisions will not be dependent upon prior knowledge of future
request times for processes to be executed. The specific functions it performs are de-
scribed below.

1. THE RUN-TIME EXECUTIVE FUNCTION

At the start of prototype execution, the run-time executive function will invoke
a procedure called PRELOADER for the translator. PRELOADER is a bufler initial-
ization process required for implementation of PSDL data streams. The translator re-

quires this process because buflers are regarded as “state machines” and must contain a

certain value or be in a certain “state” at the start of prototype execution.

The static scheduler decomposes the prototype into a set of time critical and
non-time critical operators. The result of this decomposition are files or “queues” of
operators which are the input for the static schedule or the dynamic schedule. The
run-time executive function will also invoke (start) the execution of the static schedule
once it’s created.

The schedule for time critical operators is based on the precedence relationships
among the operators, and on the prototype’s rcal-time constraints. The static scheduler

creates a schedule that will ensure that both of these requirements are met. One of the

¥

"-."’-.‘-s's’- A T AT T A AT T T T, Y N AT AT AT AT AN A AT AR
A »

-

Time 8
Translator Available a
exception :E
=
time
availabie
Static operator
Scheduler operator
/" — Quae \erminated Nconm:‘:‘ .
aritical OTe operator -
excepuon opera pet Critical
Schedule 2.0
excepuon
terminate time-out
termunate Terminate (forbidden regioa)
Prototype
3.0
termiunate
terminate
request
Hardware
nierrupt
request Handle
Interrupts
4.0
nterrupt non-terminalesble
request interrupts
Opiaor
hardware sdaress
or machine
dependent facility

L3

o Y -

Z

e x

p T

e e e

-3 ..q-

A

+

Figure 4.

DYNAMIC SCHEDULER FUNCTIONS

e ema T
Sl R A}

I'." .-'.f-'"-r

L L S, VY PO R P T . * Yo Lt Py . “u
S A A P A AT e NN A A AN AR A

o

24

L2

Dt

-

Lo

<~

>

P

Pl
-
P adiac

)
T
- -

2 4-\“-:‘ AR .r.'-“'

scheduling approaches it uses to accomplish this is a blocking strategy similar to the
method employved by Mok's Kernelized Monitor Model.

In the formulation of the static schedule, the static scheduler assumes worst case
rather than average case processor utilization for meeting a given operator’s processing
requirements. The scheduling blocks will also contain periods of time between operators
in which nothing is scheduled in order to ensure that precedence relationships are
maintained (i.e. data flow requirements are met). These two conditions result in idle
processing time that can be used by the dvnamic scheduler to schedule and execute the
prototype’s non-time critical operators. The resulting spare processing capability will
therefore occur unpredictably as shown by Figure 5 on page 26. It is then up to the
dynamic scheduler to schedule non-time critical processes into these idle areas of the
static schedule. This idea is similar to the “swapping” methodology employed by the
“ED-PP” algorithm, and the "time-division multiplexing” approach within the rate
monotonic algorithm.

2. THE CREATE NON-TIME CRITICAL OPERATOR SCHEDULE
FUNCTION

When idle processing time is available for use by the dynamic scheduler, the
steps illustrated by Figure 6 on page 27 will take place. The static scheduler will attempt
to “rendezvous” with the dynamic scheduler in order to indicate or “send the message”
that processing time (a “time slice”) is available. This process is based on the “receiver-
initiated” (poll-when-idle) strategy, and on the concepts of “inter-task communication”
and “dispatcher” modules as described in the discussion of dynamic scheduling algo-
rithms for distributed systems.

The dynamic scheduler must then determine (i.e. perform a compare operation)
if there is enough time available in the time slice to execute a non-time critical process
belore the next scheduled start time of a time-critical scheduling block. This compare
operation is analogous to an operation performed by the BEValue2 algorithm of the
time-driven scheduling model. Recall that this algorithm makes a determination as to
whether or not a given process will overload the processor. Simnilarly, the dynamic
scheduler should determine whether or not a non-time critical process can be successfully
executed within a given amount of time. If this is not possible, the process won't be
scheduled. When there is enough time available, operators will be scheduled using one

of the basic principles of the rate-monotonic algorithm. That is, an operator with the

25

T e L O L T AN SN 4

[g

n LT

=
-i-“

I g
-

¥

CAAAN

'..'ft).'." -)J‘ '{'.‘f'ﬂ"(‘-‘;ﬂ',:l.:ff'd"'f' v

TANRY

Wi Wi Wi U RN RN L WA R R T

time critical
operators scheduled
based on worst case
processor requirement

—

nothing
scheduled

Figure 5. STATIC SCHEDULER BLOCKING METHOD

shortest execution time will be considered to have the highest priority and will be

scheduled for execution first.

This “priority” assignment is an arbitrary one since the processes to be executed

are not time critical. The logic of this approach is simply to schedule as many non-time

critical processes as possible into a "block” of idle time and it is based on the [ollowing

assumptions:

1.

Employment of a more complex scheme such as the creation of a “value density

schedule”, is unnecessary and would not effectively contribute to allotment of

processing resources among the non-time critical processes.

Processes are independent of one another (i.e. there are no precedence relationships
among the operators).

3. An execution time must be assigned to cach of the operators during the specifica-

tion phase of prototype development. The assigned execution time should not be
confused with a “tirning constraint”, it is only meant to provide an estimate of the
resources required for the exccution of a non-time critical process.

26

h bV, h ARAGATWRRLACRY

o A A A MR AN L S AT Bt A O

aye
a
vl

bl ¥ 3]

-
-

LA

et d
5

o

3

LA W S N 1.4-

L g
-

f'-"_. ‘f).

- a7

d

PRL A .
A o,

.

PR R IR LR WL o oo a'ata et Rt Yol a b ta b Nt Sl R I R T N TR UV U NN R WU XUV WO WUNU WO XTI §

e 400 2 0n AWy WY ! 1Rl

("
.i
3
)
'y
4
o,
M
‘4
; 3
: I
time-out . N
- (forbidden region) Scit;l:la' m.“::n':’:im ::h
QO 3 at
@ ume \.
tim available
: - - 3
Compare operator processing operator H
Tine Stice time requrement quax
; - A
:) availabie - ".
; operstor 2
.
. = :
inerrupt terunated £
operator]
exception 44
Monitor ! -
. m x
2.3 "
terminate operator exception :
Terminate ‘
Prototype -
§ interrupt 3.0 .':_,
K ume for another :
operator ? [§%
: Handle t"
\ Interrupts W\
4.0 .
]
3
Figure 6. CREATION AND EXECUTION OF THE DYNAMIC SCHEDULE X
'r
- - .
: 4. Non-time critical processes will be sequenced in the “operator queue” based on a
! “shortest first” scheme. 1his sequencing will be performed by the static scheduler
p during the prototype decomposition operation. X
[}
For as long as time remains in an unused portion of the static schedule, the N
A dynamic scheduler can schedule non-time critical processes {or execution based on the 9
} -
preceding assumptions. When there is not enough time available to schedule the oper- N
] ator at the top of the queue (the operator with the shortest processing requirement), the :'
dynamic scheduler will go into a "wait” state and allow the processor to remain idle until E'
) the start of the next static scheduling period. Allowing idle time in this instance is based -]
‘ on the idea of a "forbidden region” in the Kernelized Monitor Model. This forbidden N
region is necessary in order to ensure that a future deadline of the static schedule can ;
r 4
'.'
27 »
vy
)
}
q‘ e Ot E
) 3 ol W G B » - L »), Lt - - A n L ~ - - L B ® TN B I ¥ Bl I {‘l..\ -- - - - !.-‘- \- —*- "f.*
\!'.0!‘,0_ b, l.l'!‘n'. ot 000,80 5, ul.-. m ll ol OO X 0. 0|.I !“l. s i- Y W o " .I, ‘-(" " . . "‘ .n...- -. N \ s

(3
-
.
-
"
-
<
-
{3
%
3
3
.
%
x
»
.
¥
«
»
D
3
)
[s
.
L]
[
&
.
ry
>

LGN

be met. Allowing this idle tme when using a rate monotonic approach also makes sense

from a performance standpoint since utilization related rescarch has indicated that

i XA

processing efficiency tends to decline for processor loads above In 2 (approximately

’

70%). <
Even though a “compare” operation is performed to determine whether or not a‘.
C . . . \
an operator can be completed within a given amount of time, the case may arisc when) “:‘:‘
]
)

a non-time critical process may exceed this amount of time. This cannat be allowed to

occur since it would interfere with the static schedule and in effect, meeting the require-

o0 T ny %, ™

ments of the system'’s real-time constraints. Therefore, execution of the non-time critical

-

process must be preempted by some type of monitor.

2
The monitoring operation crecated to do this should track the status of an exe- .“
cuting process relative to a system clock, and will terminate (preempt) a process in order :
for the next scheduling block within tlie static schedule to begin. When a process is :x'
termunated, it will be returned to the proper sequence position in the operator qucue so ‘;,‘Z
that it can be rescheduled at another time. This monitoring process will also perform ;
status monitoring with regard to completion of an operator i.e. it will “notify” the . "
compare operation that the execution of a process is complete so that an attempt can '.‘
be made to schedule another process. [Finally, the monitor will call exception or inter- > '
rupt handling procedures when the execution of a non-time critical process results in one ;
of these two conditions. ::
3. THE TERMINATE PROTOTYPE FUNCTION "'
When exceptions occur as a result of processing performed by any of the three }‘
CAPS components, the terminate prototype {unction will be called. This function will ‘gl
perform the operations nccessary to terminate the execution of the entire prototype. c.g. ;C
terminate whatever proccsses are executing at the time the exception occurs, and notify ' N
the CAPS user that an exception of a certain type has occured. "
4. THE HANDLE INTERRUPTS FUNCTION _ﬁ
Two types of interrupts can occur while a prototype is executing, an operator '_'
interrupt and a hardware interrupt. Depending upon the nature of the interrupt, this
function will call the termunate prototype function or it will inttiate some other appro- -E\E
priate interrupt handling procedure. FFor example, in the instance ol a hardware inter- N .',
rupt, instructions to go to a particular hardware address could be executed. >
»
ﬁ
23]
P,
Y
..'\-

R A e T I T S S NI N O L R o ol T CdC AT 0 0 € O NN N
A..\l:':‘.%\.h.ﬂ.&'m* " ‘ tv {”A Ve e ¥ 5" > . - -‘l L] M " '-\J -.D' cn C ~ " ,ﬁ'k‘

“eg tak Sat Pat Taf st 4of 0aq eaf tap v

B. THE USE OF ADA

The dynamic scheduler will be implemented in Ada® as previously described. Ap-
pendix D provides a “skeleton” program based on the Ada® language in order to show
some of the features of the language which are relevant for this implementation. For
example, it demonstrates the use of an Ada® procedure. Recall that an Ada® procedure
is a fundamental programming unit that encapsulates a serics of statements.

This program also demonstrates the use of a task. A task in Ada® is based on the
concept of communicating sequential processes. Tasks can be viewed as independent,

concurrent operations that communicate with one another by passing “messages” [Ref.

3: pp. 68, 70]. This feature is particularly important to the CAPS execution support

svstem as mentioned earlier because it provides the means for communication among
each of the three CAPS components.

Another feature of the language included in this program is the instantiation of e
generic package CALENDAR. CALENDAR has a predefined function, CLOCK that
returns the time of day and exports a data type of time. This package provides a simple
vet effective means for monitoring the execution time of an operator.

One other aspect of Ada® illustrated in Appendix D is an exception handling pro-
cedure. The Ada® language contains several predefined exceptions, and it also provides
a user with the abilitv to define exceptions lor a given application. For the CAPS, these
user-defined exceptions will be be the predefined PSDL exceptions (e.g.
FULL_BUFFER, EMPTY_BUFFER).

An exception is handled within the program unit where it is created (via a raise
statement), or it can be sent (propagated) to another unit for handling. Since the dy-
namic scheduler is considered to be the run-time executive for the CAPS execution sup-
port system, it makes sensc from an efliciency standpoint to handle exceptions at this
“central” location within the execution environment.

The “centralization of control” logic also makes sense for the the handling of inter-
rupts. Although not shown by the skeleton pregram, interrupt handling procedures can
include an Ada® representation clause which allows the use of machine-dependent facil-
ities. For example, an Ada® representation clause of the form “for FAIL use at
16=1FE=" as illustrated by [Ref. 5: p. 308] can be used. The hexadecimal number
16=1FE# represents some hardware or vector address.

Onc last language feature which should be mentioned, is a possible “file” structure

for storing the non-time critical operators. Recall that this file (the “operator queue”)

OO T T R e s B T S N Aty x‘x*_xf\"l.‘}.f\"*.'x" R
» g Ko Bl A - o ’ !

R TR A R e A R LR RO, OO LT LR R RN W VRGOV Y O O Y, ') A At gt

is one of the results of the prototype decomposition performed by the static scheduler. X
Several dilferent structures could be used depending upon which would provide the most ‘\':
effective means for performing input and output operations on processes during dynamic <

scheduling. One structure which is often used in Ada® to hold sorted data is a binary

»

tree as illustrated by [Ref. 17: p. 150}, Other file structures which could be used include

25 S e

5

a linked list or a data stack. Implementation of any of these would allow the dynamic

x>

scheduler to perform the input/output operations required by its design. -

¥

-
=)

K Ry
- -

'

o

S

P

"1 o

22,00

L C o
STy

g
3

L

- = T) - -
O I

o

]

v

LT, TR Yy Ny
SARAN

]
X
— -

PLLANO &5
l'{l‘ ,&".{,

-
-
F g

Y1

"
o

; .,w " N P T ™ [D T B B e Tt Tt e . IoF e JRal TRV G Y [R I R S Ay S W - \
N, B A R L o A o, SR, R o G T TR s e VR A T oA v U o eaty v v T a1

T
[

Nt O o, Ty a0 020 e Hn a8 YoV faf dut fat Sahaud A ™ 0 8% Bak’9ud Bat get -yt s 0 A 8" C Rt B0 00 00 0t AR D A 8k

-l d
;
! IV. SUMMARY ,
< . A. THE QUESTIONS ANSWERED _
; This study attempted to meet two objectives: :
1. Conceptual development of a dynamic scheduling component for the computer-
o aided design system CAPS
: 2. Interface of the dynamic scheduling component with the other two components of "
¥ the CAPS execution support systenm .
? r
s The focus on these objectives has resulted in the conceptual development of a four ;
' function dynamic scheduler. This design as outlined by Appendix C, demonstrates how
. the dynamic scheduler will interact with the translator and the static scheduler compo- .
y nents within the CAPS execution support environment. Further, the scheduling ap- :
; proach proposed for the scheduling of a prototype’s non-time critical provides a viable (
alternative for making cffective use of idle processing resources that occur as a result of !
fi: ensuring that a system’s real-time constraints are met.
: ‘ B. THE PROBLEMS THAT REMAIN ;
Y Future research for the CAPS dynamic scheduling problem needs to address several 3
' arcas. An area of primary importance is a more detailed development of the couceptual
: design, including an examination of its feasibility given the assumptions its based on. :
’ Special attention should be placed on developing a mcre Jdeiailed desenption of the op- E
erations required for the "Create Non-time Critical Operator Schedule” function. Once A
) this process is complete, the Ada® coding required to implement the dvnamic scheduling
f functions can procecd. Y
E Another area which needs to be addressed is the development of a “debugger” -
. function for the dynamic scheduler as proposed by [Ref. 18] and [Ref. 2: p. 9]. The A
_ purpose of the debugger is to collect statistics ou prototype behavior and to accept ;
3 control of prototype execution when a PSDL exception occurs. (Recall that the initial :
‘ Jdynamic design merely terminates prototvpe execution). The addition of this {unction :
. would enhance, and at the same time, possibly reduce the number of iterative phascs v
. required during prototype development because of the additional control and infornia- v
. tion it provides to the designer.) ;
' The debugging function can be fairly conventional. For example, the abilitv to at- .
y ' tach breakpoints to operators, which can be conditional with respect to a PSDL predi- d
' 5
b 31
A

Vo, L e AT AP =" Wy €g *ay h
I A N N N O R A N A RV An VAN

e

., " - - i
e \'(."\'\’- AN

RN

P]

<2

{lr' g

”
L)
x

4

-

-

LB WYY

- -

-
- "‘- by W

20N

."4 ?l.’\ S -

WA VW W LY LY U T R LN W M LW VT LY UM VNSO ooy sy

cate (an “if” condition) could be included. Selected inputs or outputs of an operator
should be traceable, resulting in a display of the values and their associated arrival or
departure times. Commands for inserting and deleting values in data streams should
also be provided.

The [acilities for gathering statistics should include commands for monitoring both
frequencies and timing information. Frequency statistics include the number of valucs
that pass down a data strearn, the number of times an exception occurs, etc. Timing
statistics include munimum, average, standard deviation, and maximum times for the
execution, response, or intervals between f(irings ol an operator. These statistics are in-

tended primarily for feasibility and performance studies. [Ref. 19: pp. 10 -13]

C. CAPS: AN EFFECTIVE DEVELOPMENT ALTERNATIVE

An example of an effort that would derive substantial buneiit {rom the use of CAPS
is the software development required for implementation of the Defense Switched Net-
work (DSN). The implementation strategy that will be emploved requires components
and features to be adopted gradually, beginning with an initial capability based on to-
dav’s voice network [Ref. 20: p. 11].

The DSN is the future Command and Control (C2) telecommunications network for
the U.S. strategic armed forces. It is being designed to provide rapid, endurable, and
economucal telecommunications services to both high and low priority users. [ligh pri-
ority users require immediate (i.e. real-time) service under the most difficult mission
stress conditions. Low priority users require service for performing operational support
acrivites such as logistics and personnel related functions which are not subject to the
same type of real-time constraints. In order to meet these requirements, the network is
planned to include more than 200 U.S. Government-owned communicdations switches in
Europe and more than 60 U.S. Government-owned switches in the Pacific, as well as
commercially leased switching and transmission services in the Western-Hemisphere and
Hawaii. [Ref. 20: p. 6]

Comprchensive computer support that is highly reliable {rom both a security and a
survivability standpoint, will be required to maintain control of this vast network. This
computer support will assist in performing these network (unctions:

I. moniter g and surveillance to detect performance abnormalities automatically
2. implcmenting rcal-time controls that prevent switch or network congestion

J. analyzing traffic data to permit continuous optimal operation of the network

¥ l:."u‘- » I."I.IJ --At4 ~'.¢ "v>“‘ . . b .' e '.‘1.. . k‘ b ..n ;‘ Y\ ld--».v- PR DAl . B ‘_ L . 'y I.‘
P]
)
»
k.
! Computer aids that minimize personnel requirements will also be employved--locally .
| and from remote locations--in administration, operations, maintenance, and network -
L management of network elements. [Ref. 20: p. 6] 5
] This diverse set of requirements illustrates why this development eflort would be .
3
f significantly enhanced by using CAPS, its prototyping methodology, and PSDL. This \
)
0 1s especially true if the computer support systems are developed using Ada® as currently 3
{ .
o planned.
D. CONCLUSION ¢
: A primary advantage of CAPS for system development is that PSDL use {or con- P
: p v g) I &
struction of an executable prototype would be much easier and simpler than direct use x
* of Ada® Additionally, executing a prototype (or prototypes) that demonstrates the ;
K functioning and interaction of modules within a complicated embedded svstemn like the "
DSN, would significantly increase the confidence that the svstem can be built as ::
A planned. Using a prototype would also improve cost estimates since the cost of the in- ;
r - . . "
- tended system is gencrally proportional to the cost of a rapid prototype. [Rel 19: p. 12]
A The conceptual development of the CAPS dynamic scheduler represents a significant .
)
: step forward in meeting the demand [or rapid development of rcliable software for large Ay
. oL . N) .
R real-time computer systems. Additionally, the proposed “shortest first” scheduling al- "
. gorithm used by the dynamic scheduler could be effective for scheduling non-time critical
processes in other real-time environments as well. This scheduling approach could prove y
L to be an eflective way for utilizing idle processing resources which are often wasted in .
] .
. large real-time systems. h
- vy
- +
b {
‘ r
; ¢
e ”
. 2
X i
~ ~3
> 3
< N
: 5
o
N
b .
. :
- {
; 33
) W
" 4
1! 1
: ’
&
e e e N N N e S I

. a A A A R O v A e At R Sha Aracate A e Ate Ate Akadbe Ata tin Ate Al tha
Beh fet 4,0 0t F \J bt) (82 MW W T P B MY A 0’ R AAN . R i AY A

APPENDIX A. A PSDL PROTOTYPE

This is an example of a PSDL prototype as it appears in [Ref. 4: pp. 27-40). 1t was
developed to model a simple system for treating brain tumors using hyperthermia.

OPERATOR brain_tumor_treatment_system
SPECIFICATION
INPUT patient_chart: medical_history,
treatment_switch: boolean
QUTPUT treatment_finished: boolean
STATES temperature: real
INITIALLY 37.0
DESCRIPTION
{The brain tumor treatment system kills tumor cells
by means of hyperthermia induced by microwaves.

END
IMPLEMENTATION
GRAPH
100
SINVLATED_PATIENT
TENPERATURE TRERTRENT_POUER
100
PATIENT_CHART | HYPERTHERNIA_SYSTEN —)TRERTHEHT_FINI SHED
TREARTHENT_SUHITCH

DATA STREAM treatment_power: real
CONTROL CONSTRAINTS
OPERATOR hyperthermia_system
PERIOD 200 BY REQUIREMENTS shutdown
OPERATOR simulated_patient
PERIOD 200
DESCRIPTION {paraphrased output}
END

TYPE medical_history
SPECIFICATION
CPERATOR get_tumor_diameter
SPECIFICATION
INPUTS patient_chart: medical_history,
tumor_location: string

34

‘ '.r"ﬂ'("-’ "0 AT A AT AT A AN NN S S PalL W e B S I S L e I N A TS SR T A e TR S Iy
8 B - - . N B el 0

A0l ’ /f(-r.rr T R P N P AT AP

PEIETL TN NSNS

~ he

s

- ')‘ ’)"J y

o o

o TR AR

e

b g

.’-’--,‘::“p' AT tj (-.’-‘, -

A AT (T

v

s

AN A]

i OUTPUTS diameter: real 9
N EXCEPTIONS no_tumor

MAXIMUM EXECUTION TIME 5 ms -
: DESCRIPTION ot

{Returns the diameter of the tumor at a given location, i
produces an exception if no tumor at that location.

z /
b END ¥
i "
KEYWORDS patient_charts, medical_records, treatment records, L
lab records |
DESCRIPTION o4
{The medical history contains all of the disease and f;
treatment information for ome patient. The operations :
for adding and retrieving information not needed by)%
the hyperthermia system are not shown here. 2]
END
¢ "
F IMPLEMENTATION ™
] tuple {tumor_desc: map-from: string, to: real{, ... } :
D) d
OPERATOR get_tumor_diameter N
IMPLEMENTATION "
Y GRAPH)
} ™
] N
PATIENT_CHART .
TUPLE. GET_TUNOR_DESC
: o X
; . b
i3
TUMOR_LOCAT 1on FRP . FETCH > DIARETER X
N
B
. DATA STREAM td: tumor_descr .
. CONTROL CONSTRAINTS .
) OPERATOR map. fetch]
- EXCEPTION no_tumor IF not(map. has(tumor_location, td)) .
' END
4 END -
: 3
N
OPERATOR hyperthermia_system L
SPECIFICATION W
[INPUT temperature: real, patient_chart: medical_history, -Q{
‘ treatment_switch: boolean 'y
1 OUTPUT treatment_power: real, treatment_finished: boolean !
3 MAXIMUM EXECUTION TIME 100 ms o
BY REQUIREMENTS temperature_tolerance
) b
¥ 35 y
\ -~
§
! a
4
l..‘
- N . *\‘-\ - —.*a'; ; ‘J“-(_':'J""'\ "-"‘-}’\'\.".'\-..’,'\')ﬁ*}‘ -)'\'; ,. *‘4’ -f)‘f ‘-,)-.p-l'.- '.\l.-‘, .I'."‘:\’ N W |.~“

MAXIMUM RESPONSE TIME 300 ms
BY RFQUIREMENTS shutdown
KEYWORDS medical_equipment, temperature_control,
hyperthermia, brain_tumors
DESCRIPTION
{After the doctor turns on the treatment switch, the
hyperthermia system reads the patient's medlcal record
and turns on the microwave generator to heat the tumor
in the patient's brain. The system controls the power
level to maintain the hyperthermia temperature of
42.5 degrees C. for 45 minutes to kill the tumor cells.
When the treatment is over, the system turns off the
power and notifies the doctor.

}
END

IMPLEMENTATION
GRAPH

MAINTAIN

STRRT_UP :

> TRERTHENT _F 1M1 SHED

10 \L;L
TREATMENT_SU I TCH —{sam_mntmt

DATA STREAM estimated_power: real
TIMER treatment_time
CONTROL CONSTRAINTS
OPERATOR start_up
TRIGGERED IF temperature < 42.4
BY REQUIREMENTS maximum_temperature
STOP TIMER treatment_time
RESET TIMER treatment_time IF temperature <= 37.0

OPERATOR maintain
TRIGGERED IF temperature >= 42.4
BY REQUIREMENTS maximum_temperature
START TIMER treatment_time
BY REQUIREMENTS treatment_time, temperature_tolerance
OUTPUT treatment_finished IF treatment_time >= 45 min
BY REQUIREMENTS treatment_time

“
-
LWt

- -~ - - o . " \
" '!-'f\ '\"\'-\. ﬁ,"-. AT A AT TN A s."» A A A S A A S '\.’\"\ R \‘\ AR

T w X

et

END

OPERATOR start_up
SPECIFICATION
INPUT patient_chart: medical_history, temperature: real
OUTPUT estimated_power: real, treatment_finished: boolean
BY REQUIREMENTS startup_time
MAXIMUM EXECUTION TIME 90 ms
BY REQUIREMENTS temperature_tolerance
DESCRIPTION
{Extracts the tumor diameter from the medical history and
uses it to calculate the maximum s3afe treatment power.
Estimated power is zero if no tumor is present. The
treatment finished is true only if no tumor is present.

)
END

IMPLEMENTATION Ada start_up
END

OPERATOR maintain
SPECIFICATION
INPUT temperature: real
OUPUT estimated_power: real, treatment_finished: boolean
MAXIMUM EXECUTION TIME 90 ms
BY REQUIREMENTS temperature_tolerance
DESCRIPTION
{ The power is controlled to keep the power between 42.4
and 42.6 degrees C.

END

IMPLEMENTATION Ada maintain
END

OPERATOR safety_control
SPECIFICATION
INPUT treatment_switch, treatment_finished: boolean
estimated_power: real
OUTPUT treatment_power: real
BY REQUIREMENTS shutdown
MAXIMUM EXECUTION TIME 10 ms
BY REQUIREMENTS temperature_tolerance
DESCRIPTION
{The treatment power is equal to the estimated power
if the treatment switch is true and treatment finished
is false. Otherwise the treatment power is zero.

}
END

INIPLEMENTATION Ada start_up
END

37

PR ES

o " A O W L WO WO P O AT Sy iy At S P A A P P A s Y W
ol -' !‘v‘.\"!" aloh "-.!" 087,408 e VY ‘.~;‘ (N '.0“‘ ..:. A ke 3 'n -‘\N'-‘- N

A

LA A

“3F

S5 R

Y
" -

"0s"ed™ VR

Lo
A W5 SV 0 _E8

-
-

FIPE

LRy A AL LA A% L S LA L) W
TR T P e e D Mon = e Y S R e b NN

v - J » o a, - e . L .o - .ny I ¥
W W W WL P o Wy L Ve A

APPENDIX B. PSDL GRAMMAR SUMMARY

This is a summary of PSDL grammar and language conventions as initially de-
scribed in {Ref. 1: pp. 54-56] and further refined by {Ref. 6]. Several conventions are
used for symbology in the grammar. [Square Braces] indicate optional items. { Curly
Braces } indicate items which may appear zero or more times. Bold face type indicates
a named terminal symbol which must appear in the program listing the programmer
writes. “Double quotes” indicate character literals which must appear in the program
listing. The "|” vertical bar indicates an exclusive-or selection. In this case the pro-
grammer selects one and only one of the items separated by the vertical bar.

As an example, the token timing_info is one of six mutually exclusive possibilities
which may define the attribute token. The attribute token may appear zero or more
times to define the interface token, which is a required attribute of the operator_spec
token. Timing_info, if selected for attribute, may be empty, or it may contain one or
more of the optional tokens allowed to define timing_info. Each of these tokens may

appear no more than one time for a given instance of timing_info.

psdl = { component }

component = | data_type
| operator

data_type = type id type_spec type_impl

operator = operator id operator_spec operator_impl

type_spec = specification [type_decl] {op_spec_list} [functionality] end
op_spec_list = operator id operator_spcc

operator_spec = specification interface [functionality] end

!

interface = {attribute [reqmts_trace|}

attribute = | generic_param
| input
| output
| states
| exceptions
| timing_info

generic_param = generic type_decl

38

¥ e’

WA AT AP AT N¢? AT Y NI R AR TR RIS
U™ n™ e a An™ 4 Y, " .‘.-‘-l

W -,

- -

i

r‘.'-!F-

¢ 3 8

L0 0t T 1 0 it A L R ")

input = input type_decl

output = output type_decl

states = states type_decl initially expression_list
exceptions = exception id_list

id_list = id { ”,” id}

timing_info = [maximum execution time time|

{minimum calling period time]
[maximum response time time]

time = number [unit]
unit = | nicrosec | ms | sec | min | hours
reqmts_trace = by requirements id_list
functionality = [kevwords| [informal_desc] {formal_desc|
keywords = keywords id_list
informal_desc = description “{" text “}”

oy

formal_desc = axioms “{" text ”}

type_impl = | implementation Ada id
| implementation type_name { op_impl_list } end

op_impl_list = operator id operator_impl

operator_impl = | implementation Ada id
| implementation psdl_impl

psdl_impl = data_flow_diagram
[streams]
[timers]
[control_constraints]
linformal_desc]
end

data_flow_diagram = graph { link }
link = id ".” opid "->" id

opid = id [™" time)

strcams = data_stream type_decl

”

type_decl = id_list type_name { " id_list " tvpe_name }

type_name = | id
| id “[" type_decl "|”

timers = timer id_list
control_constraints = control constraints { constraint }

constraint = operator id

BN R N W N Y R R M W o T T e Y T A QN WY W W Y T 4 L AT AT N RN
e e T e T s

AN

S s

e e

)

e A st ath e, 2" 8, “alg¥ flav Ra® 2av Ga® Pa¥ Qe gt gt Ga® Bt Qat et t4¥ @28 008 02 Gt o0 fat N S.A"
! - \J

[triggered [trigger] [“if” predicate] [reqmts_trace]]
[period time {reqmts_tracej |

(finish within time [reqmts_trace] |

{output id_list if predicate [reqmts_trace] }
cexeeption id [if predicate] [requats_trace})
{timer_op id [if predicate| [reqmts_trace] }

timer_op = | start | stop | read | reset

trigger = | by all id_list
| by some 1d_list

predicate = | not predicate
{ predicate and predicate
| predicate or predicate
| expression_list
| 1d ™" 1d_hst

expression_list = expression { “,” expression}

expression = | number
| constant
lid
| type_name ".” id “(” expression_list “)”

40

D
\... -;"'{ '-f’.!"’“ ha® B! v- a"q \'.- LR Ll 1 L '\“ . vv . --n ~-.\.- » ')"i.'{',‘h.'.k',)'*

GG S L o W L L U e 0 0% LN At LN L

A

- » - . -
WA,

.{,{.l

-~ E_ R L d
Pl NSy -

7,9

-A? 2>

-1y

X Ay

LA

o ;'

B R o -2 w
5" B S %

/i

EE_R_s A

v

Xl

e

“.‘.’h'l'i"""."l,‘f”’

-

VWO OO A P M P AT TV T R P e K "% Y e WX V 1L LA R AR DTS B At "2l Y WNM NGO P) W N W Mg WY L' La et

APPENDIX C. DYNAMIC SCHEDULER FUNCTIONS

1.0 Run-Time Executive

1.1 Invoke Translator Prelocader Procedure X
1.2 Invoke Static Scheduler L

R

2.0 Create Non-Time Critical Operator Schedule o

2.1.1 Find top of queue {operator with shortest

S 2.1 Compare Time Slice to Operator Queue Time Requirement ;{
N
time requirement) 0

2.1.2 Subtract operator time requirement from time slice o

2.1.3 When result of subtraction > 0, send time N
available message to execute operator function)

2.1.4 When result of subtraction < 0, let processor 0
idle until start of next static schedule ¢

requirement

ule Operator \
Schedule available operator from operator
queue for execution L
Send completion message to monitor ~9

A

. 2

. .3 Send exception message to monitor ™
) 4 Send hardware/interrupt message to monitor

2.3 Monitor Process

2.3.1 Mon.tor execution time of operators

2.3.2 Terminate operator if available
processing time is exceeded

2.3.3 When operator completes execution,
send message to compare operation
to see if more execution time is
available

2.3.4 When exception occurs during dynamic
schedule processing, call terminate
prototype function

2.3.5 When interrupt occurs during dynamic
schedule processing, call handle
interrupts function

- "1.:‘;"7 5, G T };-.

A,

.

o

A

3.0 Terminate Prototype
3.1 Terminate Translator
3.2 Terminate Static Scheduler
\ 3.3 Terminate Dynamic Scheduler

ST 2

4.0 Handle Interrupts
4.1 Send terminate request to terminate prototype
4,2 Send non-terminatable request to appropriate
location

i

TR T A

LEEAT

4N

€

i

N T RN AN W)

r R P R IR IR W o Y% " M ¥ N LIS LRI}
e T e e e R T e e s e

() IR) 928 Gt g8 ¢ X Y M 1§ "ot W0 L W) ¥
AN I AT AT A A A U Y R o S T WL y® 4) §o%20 2 ‘
" 1]
P (3
» iy

'
"
o
Fe
' ~d
i .
¥
)
\ {

‘i
) i g
¥ b
)
2"
&
. a
»
>
. .‘
) &8
i e
. \
o
) J
!]
h N\
1 i
| o
. '
¥
A
; . i
; E
-
.)
-
-
S
Es [B¢
d N
B N
¥ o
Y ;
'
N
™

e,

- A E s -
- -

‘1!

Crrre

oy
!

.
(

- < » LY - ym » a1 S - LTS SIS TR . O . oy ~pe " " —.‘\(
t..l'l.l.o.l'l"‘.l'-\n!t AN ITCATOGA N e Oy V AL D e O l.o A e, "’ 3 ‘... ’.. 4 ATt . AV IR N,

TR

APPENDIX D. PSEUDO-CODFE FOR AN ADA PROGRADM

This pscudo-code illustrates some useful features of the Ada® programming lan-

guage (Ada® is a registered trademark of the United States Government, Ada Joint
Programming Office). A detailed description of how these features can be implemented
in an Ada® program appears in [Ref. 5}

--Two hyphens indicate the start of a comment in the Ada language.
--Four hyphens within this pseudo-code are used to enhance
--readability and to indicate the absence of formal

--parameters, statements, or other features of the language
--that are required by an 2ctual program

with OPERATOR_QUEUE; --the operator queue of
--non-time critical processes
--will be created by the
--static scheduler

with CALENDAR; --the Ada language definition
--includes the package CALENDAR
--with a predefined function,
--CLOCK that returns the time
--of day and exports a data type
--of time

procedure DYNAMIC_SCHEDULER is

declare

FULL_BUFFER: exception; --when an exception is
EMPTY_BUFFER: exception; =--raised within an Ada
OVER_TIME: exception; ~--program unit, it is

PSDL_EXCEPTION: exception; --propogated to a level

43

. - - . - . N ' FRE RS R N - - ~ " " -np - - agmg - - ma W y-.- - o e w - LIPS %) ..A\'-‘ ‘t‘-\~.-,,._'..“‘A.;‘,‘-p“ ‘.:k.
A T TR T R T T L) T S T B e R P G A A N A R AN

MY NN Y W N VRN LR G RANCADIMB IS At el Sl ot 0" 402730020 %) 15 47004 NI RAE TP W o W W O W (W N Pl AN OO O b '.’,

)
)
-~
--where it can be handled .:
Y
—em= ¢
oy
type READY is text; --the text types indicate the L
type SCHEDULE is text; --different messages exchanged : Ay
type TIME_SLICE is text; --during a rendezvous pﬁ
————- l':',
———- "
PRELOAD : READY; ¥
SCHEDULE : CREATED; "y
IDLE : TIME_SLICE; ~
’
---- 4
)
procedure PRELOADER; --PRELOADER will be some actions W]
--that will invoke buffer v
--initialization procedures for the !

--translator

procedure START; --START will consist of some actions
~--to start the execution of the '
--static schedule

G AR

procedure CREATE_SCHEDULE is --the procedure that will
--create a schedule for
--the non-time critical
~-operators

SHCAY

l’-?- (P

Y

T

use CALENDAR;
use OPERATOR_QUEUE;

Rl T

ey

TIME, OPERATOR_TIME_REQUIREMENT : TIME_SLICE;

- - - e “l

————)
L

begin -

--COMPARE_OPERATION "

44

R A S N N T o N IS TR e A 47 A A VAT AT

L
I Bt w

w
x

[o
L

vy

[

- .

[

--find top of OPERATOR_QUEUE (operator with shortest
--time requirement)

--select this operator and compare its execution
-=time with TIME_SLICE in order to determine
--if enough time is available to

--execute this non-time critical process

o I

-

--while enough time is available, in a given
--TIME_SLICE, schedule processes for execution

S

--else let the processor idle till start
--of next static scheduling block

L

- \

--MONITOR_PROCESS --implement a process to monitor X
--status of executing non-time -
--critical operators (time, completion, etc.) '
--using the generic package CALENDAR

3
- .- w - ~
\
end CREATE_SCHEDULEZ; ™
-t X
task RUN_TIME_EXECUTIVE is =--an Ada task is an effective 5
--method for implementing the -
--the run-time execative function

--because it provides a means for ™

--communication among the three \

--execution support system commponents t
--entry and accept provide the 3

--means for "two way' "

--communications among the three .

--eXxecntion support system components .

entry TRANSLATOR (PRELOAD : in READY); .

W

--the communications path from o

--the dynamic scheduler ‘
--to the translator which will be Ky

--used to invoke the buffer -
--preloader procedure -y
-

LY

ent.y STATIC_SCHEDULER (SCHEDULE : in CREATED); o
0

45

L O R e W P P

ifkﬁdﬁyafh A NP {L! iﬁ:&&k

‘Q‘ .‘l‘ "' L W U

fatla® 82 at Hat et at ba® &

.................................

-t =

--the communications path between
--the dynamic scheduler and the
--static scheduler which will be
--used to invoke (start) the
--execution of the static schedule

R e N 85 % 87T 15 % %%

entry IDLE_TIME (IDLE : in TIME_SLICE);

.v:‘?Y.YI"

--the communications path between
-~the dynamic scheduler and the
--static scheduler which will be
--used to indicate to the dynamic
--scheduler when idle time is
--available

l.,-..".Lr _

end;

- .

- »

K4

e - -

task body RUN_TIME_EXECUTIVE is

begin

accept TRANSLATOR (PRELOAD : in READY) do PRELOADER;

‘ --PRELOADER will be some actions that
--will invoke buffer initialization
\ --instructions

y- R X 3 e >

;-

N accept STATIC_SCHEDULER (SCHEDULE : in CREATED) do START;

-=-START will consist of some actions
--to start the execution of the static
--schedule

R A

. - -

accept IDLE_TIME (IDLE : in TIME_SLICE) do CREATE_SCHEDULE;

A AR

--when idle time is available, the
X --dynamic scheduler can schedule) -
! --non-time critical processes for S
--execution during a given N
--"time slice"

)
'y A R A T A '\ NN T AT g A A e I I NI AR A P g OGN NS,
S D M a0 ALY v . B Dauds S . ST RN ' * A

T G e O e L N e TN N N N W Y N 0 (oA Reb e it e A e et o

| end RUN_TIME_EXECUTIVE;

[} - -

begin

Y oy an e

RUN_TIME_EXECUTIVE. TRANSLATOR (PRELOADER);
RUN_TIME_EXECITTTVE, STATIC_SCHEDULER (START);

RUN_TIME_EXECUTIVE. IDLE_TIME (CREATE_SCHEDULE);

-

--when an exception occurs, the generic procedure TEXT_IO
--and an application specific procedure such as PUT_LINE
--can be used indicate to the CAPS user what the nature

i --of the exception is

exception
) when FULL_BUFFER=>

TEXT_IO. PUT_LINE ("An attempt was made to
. update a full buffer");
. TERMINATE_PROTOTYPE;

--using the Ada generic package TEXT_IO,
. --and a user written procedure PUT_LINE,
--a message as shown will appear on the
--user's screen and prototype execution
] --will be terminated when an exception is
--raised.
end;

exception
when EMPTY_BUFFER=>

TEXT_I10. PUT_LINE ("An attempt was made to
; read data from an empty
buffer");
' TERMINATE_PROTOTYPE;

: 47

200 "0 "0 20 8 0 4" 0D

-~ k5

e

T LN T

bRt -- ..'..,-"

oy

'

TN ST T ey A T U

.-‘

-

-1 P P L

“w

vy W

I

B oA s m e -

{
]
g

!
AN

\
P T gt R R N T R e R e S N e SR AR C U SRR GRS S t S L N CUAYy OO CRAREN LN
“ - . L) Al - B » - - L) avy e a¥y & » » - . .

end

end;

exception

when OVER_TIME=>

TEXT_I0.PUT_LINE ("A PSDL operator has
exceeded maximum

execution time'");
TERMINATE _PROTOTYPE;

end;

exception

DYNAMIC_

when PSDL_EXCEPTION=>
TEXT_I0. PUT_LINE ("An undefined PSDL
exception

has occurred');
TERMINATE_PROTOTYPE;

end;

SCHEDULER;

48

N AN SN A M AN,
~ s

T
"

I A A A A
a

)
k4
by
~

8
W

T T T T o N

P

9

%) “h T R AR Y Ny

........

LIST OF REFERENCES

Luqi, Rapid Prototyping for Large Software System Design, Ph.d Thesis, University
of Minnesota, Duluth, M\, May 1986.

Lugqi, and Ketabchi, M., 4 Computer Aided Prototyping System, Technical Report
NPSS52-87-01 %, Naval Postgraduate School, Monterey, CA, April 1987.

Lugi, and Ketabchi, M., “A Computer Aided Prototyping System”, [ELE Software,
IEEE Computer Society Press, Washington, D.C., 66-72, March 1988.

Luqi, Berzins, V., Yeh, R., 4 Prototyping Language for Real-Time Software, Tech-
nical Report NPS32-837-010, Naval Postgraduate School, Monterey, CA, April
1987.

Booch, G., Software Engineering with Ada, The Benjamin’Cummings Publishing
Company, Inc., Menlo Park, CA, 1987.

Moffitt, C. R.. A4 Language Translator For A Computer Aided Rapid Proiotyping
System, M.S. Thesis, Naval Postgraduate School, Montcrey, CA, March 1988.

O'Hemn, J. T., A4 Conceptual Level Design For A Static Scheduler For Hard Real-
Time Systems, M.S. Thesis, Naval Postgraduate School, Monterey, CA., March
1988.

Janson, D. M., 4 Staiic Scheduler For The Computer Aided Prototyping System:
An Implementation Guide, M.S. Thesis, Naval Postgraduate School, Monterey, CA,
March 1988.

Davari, S. and Dhall, S. K., “An On Line Algorithm f(or Real-Time Tasks Allo-

cation”, ILEE Reul-Titme Systemns: Proceedings of the Syriposium in New Orleans,
A g yrip

Lousiana, December 2-4, 1956, IELL Computer Society Press. Washington, D.C.,
194-199, 1937,

49

):{vvw‘-}\‘rﬁ._?) ~ - .i -.)‘- o .(‘..““P.-.‘ e,
» Y ’ e

O A0 M0 LY

i G At el e i A S A it o TR TR X 9 60 0t 8,4 0000 00 IRNER 420 Rtal ad O a g NS

T L L N 8 5 <)
4 Ol - LR IR TR 5

Pl e

s

P 202 AT

»

[R e N S8 NN 3N]

\ Ay 5
WY

[

LS

-

- -

iy e By Jn g N Dt Fn s et g0 ot JR 000

R o g

» =
“

*

AT Y F AL

M2 25 30 M A A

ooy

v ! - > ua’ L gy
] & u ¥ ¢

WA LW RS RS

Jensen, E. D., Locke, C. D., Tokuda, H., “A Time-Driven Scheduling Model for
; Real-Time Operating Systems”, [EELE Real-Time Systems: Proceedings of the Sym-

posium in San Diego, California, December 3-6, 1985, IEEE Computer Society
Press. Washington, D.C., 112-122, 1986. :,

Mok, A. K., “The Decomposition of Real-Time System Requirements into Process

Models”, /EEE Real-Time Systems: Proceedings of the Symposium in Austin, Texas,
December 4-6, 1984, IEEE Computer Society Press. Washington, D.C., 125-133,
1985.

Mok, A. K., "The Design of Real-Time Programming Systems Based on Process

Models”, [EEE Real-Time Systems: Proceedings of the Symposium in {ustin, Texas, o

A

\ December 4-6, 1954, IEEE Computer Socicty Press. Washington, D.C., 5-17, 1985. “
1 Bt
: ‘]

13. Mok, A. K., and Sutanthavibul, S., “Modeling and Scheduling of Datatlow Reul-

]
X Time Systems”, [ELE Real-Time Systems: Proceedings of the Symposium in San o
. o
: Diego, California, December 3-6, 1985, IEEE Computer Socicty DPress. ::
N Washington, D.C., 178-187, 1986. &

14. Sha, L., Lehoczky, J. P., Rajkumar, R., “Solutions for Some Practical Problems in
[Prioritized Preemptive Scheduiing”, IEEE Real-Time Systems: Proceedings of the

R Ty

Symposium in New Orleans, Lousiana, December 2-4, 1986, IEEE Computer Socicty
Press. Washington, D.C., 181-191, 1987.

5. Cheng, S., Stankovic, J. A., Ramamritham, K., Dynamic “Scheduling of Groups
\ of Tasks with Precedence Constraints in Distributed Ilard Real-Time Systems”,
ILEE Real-Time Systems: Proceedings ¢f the Symposium in New Orleans,
Louisiana, December 2-4, [985, IEEE Computer Society Press. Washington, D.C.,
166-174, 1987.

o

16. Chang, ., and Livny, M., "Distributed Scheduling under Deadline Constraints:

eIl R A I, RO SRt A el

Comparison of Sender-initiated and Receiver-initiated Approaches”, IEEE Real-

- -

, Time Systems: Proceedings of the Symposium in New Orleans, Louisiana, December
2-4, 1986, ICEE Computer Society Press. Washington, D.C., 175-180, 1987.

A

-

P/

ey

2 7 0

W

....................................... E “m ™
~f.flfff.-.wr.r.r ..r-r-.a.r{_-.r\.-..'-.r.-.r.r.- -\-Nn’u\ I\.\.\\‘\\-J“.,,,

" . b ‘."-‘\'\\\ NN, VRN,

17.

. 8.
§
#
§
1 .
19.
h
! 20.
b
)
3
§
)
f)
3
[}

ki
) N ™ ",
DOt Tt

Brav, G., and Pokrass, D., Understanding Ada--4 Software Engineering Approach,
John Wiley and Sons, Inc., New York, NY, 1985.

Luqi, “Execution of Real-Time Prototypes”, ACM First International Workshop on
Computer dided Software Engineering, Cambridge, MA, 870-884, May 1987.

Luqi, Execution of Real-Time Prototypes, Technical Report NPS52-87-012, Naval
Postgraduate School, Monterey, CA, April 1987.

Defense Comumunications Agency, Defense Switched Network, The Defcnse Com-

munications Agency, Washington, D.C., 1987.

51

T TW LT e T8 e %] A Y R LN - LN LAY NN My U P e ™ -
il iah bty , s "‘V’

o ™ AT AR
9, l-. atont el % b A OB W S 3 . . ("' "'f* 3

.

AR

5.

X

-

LA S

PR

~
)

[
.
“~
!
’
"y

4
[s
&
&
»
b4
[4
»
3
.
&
=
i
h
-
¢
&
’
X
4
e

I N

INITIAL DISTRIBUTION LIST

No. Copies

“

1. Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22304-6145

C LS.

2

2. Library, Code 0142
B Naval Postgraduate School
Monterey, CA 93943-5002

b

DEELLI

! 3. Oflice of the Chief of Naval Operations 1
Code OP-941
Washington, DC 20350

Jd. Commander, Naval 't elecommunications Command 1
Naval Telecommunications Command fHeadquarters
4401 Massachusetts Avenue N. W.
Washington, DC 20350

% % % S X

1oy

N 5. Naval Telecommunications System Integration Center 1
Naval Communications Unit Washington
. Washington, DC 20397-5340

6. Ada Joint Program Office l
OUSDRE(R&AT})
The Pentagon
Washington, DC 20301

7. Commander, Naval Data Automation Comunand {
N Washington Navy Yard
Washington, D.C. 20374-1662

W L i K
A

8. Chief of Naval Research |
Ollice of the Chiel of Naval Research
; Atten. CDR. Michael Gehl Code 1224
: Arlington, VA 22217-3000

S e T T T 2
.)

_ 9. Professor LUQI, Code 52LQ]
& Naval Postgraduate School
R Monterey, CA 93943

T AR

10. LCDR Barry A. Frew, USYN, Code 54FW 1
Naval Postgraduate School
Monterey, CA 93943

}

AT TEL

) 11. Defense Communications Agency 3
Attn: LT Susan L. Eaton, Code B531
J Washington, DC 20305

{3
o
CE A A AL

~

.
L » - - ~ oA P T S T T Y D I SR S RTINS LN S T . - . ;
"‘. o V ! ! v ‘th,j '. 5 . \'} e I..‘r'. . n' -} w 'l ‘-q'. LN .|" ,l’ y',\ﬁ ; ’ ‘* * ' I /A '.'. fﬁf..ﬂ ~fﬁf~f~~f¢ .l" ,'1' i'..f

»

a0 8 I8 g0

LT Charlie R. Moffitt, USN
Department Head Class #104
SWOSCOLOM, Bidg. 446
Newport, RI 02841-3012

Office of the Chief of Naval Operations
Code OP-945
Washington, DC 20350

Professor D. C. Boger, Code 54BO
Naval Postgraduate School
Monterey, CA 93943

‘- - -~
B S B s

PatTat LU i i 0T 0 0706 0 0, A B A RN N e SR A SR S AR v ebk’ea? s s
[X AP ﬁ"{t"’.‘g .;.'.;.l"r __. ;s)\xh A S A T L N A T R T A A S AT M TN A a ', 6% 8% ‘0]" NN
P Enl X L
A 0l

2%
’ A 4
L2 \" {
3, G o
W “ a .
1(- y
) s
: Ly
: i
W
9
@
' ;':-f."'
A iy
)) $
. ?
: ()
Nt
K o
i ~rd
{ S
v E’.‘*ﬁ
D) |)w
(b
o
®
) o
I
\ P
; o
P
o
X ol
!
K
D o)
3 ::l !
N '::'
Y, At

T
-
e
-
W,

¢

o’

¥ #

§ o
I iy
N \-*‘

ol ufa v
B)
] ‘ '.’.‘".1".-'..':’{ R." '.l. ¢ .

Ba on

'-\:{

2

A <)
e v atee
oW rrrorre i

)

